Контроллер мотора

CMMB-AS-0x

Описание

Монтаж и подключение

Для контроллера мотора CMMB-AS-0x

> 8081828 2017-11b [8081835]

Описание опасностей и указание по их предотвращению:

Опасность

Непосредственные опасности, которые могут привести к смертельному исходу или тяжелым травмам

Предупреждение

Опасности, которые могут привести к смертельному исходу или тяжелым травмам

Осторожно

Опасности, которые могут привести к легким травмам или значительному материальному ущербу

Другие символы:

Рекомендации, полезные советы, ссылки на другую документацию

Необходимые или целесообразные для использования принадлежности

Информация об использовании, безопасном для окружающей среды

Знаки выделения фрагментов текста:

- Действия, которые можно выполнять в любой последовательности
- 1. Действия, которые нужно выполнять в заданной последовательности
- Общие перечни
- → Результат действия/ссылки на дополнительную информацию

Список версий

Версия	Глава	Дата	Изменение
1.00	Все	17.03.2017	Первый выпуск
1.01	3.2.4, 6.2.1, 6.3.1	09.05.2017	Рис. 3-5, табл. 6-7, 6-11
1.02	3.1.1, 3.2.2	18.07.2017	Табл. 3-1, табл. 3-2
1.03	6.4.1	25.10.2017	Рис. 6-2, текст

Содержание

Глава 1	Безопасность и условия применения изделия	. 1
1.1	Безопасность	.1
1.1.	1 Указания по безопасности при вводе в эксплуатацию, ремонте и выводе из эксплуатации	.1
1.1.	2 Защита от удара электротоком за счет защитного сверхнизкого напряжения (PELV)	.1
1.1.	З Использование по назначению	. 2
1.2 Tpe	ебования к применению изделия	. 2
1.2.	1 Условия транспортировки и хранения	. 2
1.2.	2 Технические требования	. 2
1.2.	З Квалификация специалистов (требования к персоналу)	. 3
1.2.	4 Область применения и разрешения	.3
Глава 2	Введение	.3
2106		3
2.1 00		י. ג
2.1.		ر. ،
2.1.	з Кабели NEBM	.4
2.2 Вн	ешний вил устройства	. 6
Глава З	Подключение контроллера мотора СММВ	.7
3.1 По	дключение механической части	.7
3.1.	1 Требования к окружающей среде	.7
3.1.	2 Условия монтажа	.7
3.2 По	дключение электрической части	. 8
3.2.	.1 Контроллер мотора серии СММВ, вид спереди	. 8
3.2.	.2 Интерфейс питания (Х2)	.9
3.2.	3 Интерфейс RS232(X3)	.9
3.2.	4 Многофункциональный интерфейс (Х4)	10
3.2.	5 Интерфейс энкодера(Х5)	12
3.3 Cx	ема линий сервосистемы СММВ	12
3.3.	1 Выбор плавких предохранителей, тормозных резисторов и силовых выключателей	13
Глава 4	Настройка (наладка) контроллера со светодиодной панелью управления	14
4.1 Ис	пользование панели управления	14
4.2 Стј esto CMMB-AS	руктура меню и навигация по панели управления 5 Руководство по сервосистеме	15

4.3 Функция "Easy Use" (Простое применение)	
4.3.1 Процедура наладки с помощью функции Easy Use	17
4.3.2 Меню EASY – схема выполнения и описание	
4.3.3 Меню tunE – схема выполнения и описание	25
4.3.4 Шаговый режим (F006)	28
4.3.5 Архив ошибок (F007)	
Глава 5 Конфигуратор СММВ, руководство по эксплуатации	30
5.1 Первые шаги	30
5.1.1 Язык	30
5.1.2 Открытие и сохранение файлов проекта	30
5.1.3 Запуск связи	
5.1.4 Идентификатор сетевого узла и скорость передачи данных в бодах	
5.1.5 Объекты (добавление, удаление, справка)	
5.2 Инициализация, сохранение, перезапуск	32
5.3 Обновление встроенного ПО	32
5.4 Чтение/запись конфигурации контроллера	33
5.4.1 Считывание настроек из контроллера	33
5.4.2 Запись настроек в контроллер	33
5.5 Функции дискретных входов/выходов	
5.5.1 Дискретные входы	35
5.5.2 Дискретные выходы	
5.5.3 Переключатель передаточного числа редуктора (только для экспертов)	
5.5.4 Переключатель усиления (только для экспертов)	
5.5.5 Функция Fast Capture	
5.6 Осциллограф	
5.7 Индикация ошибок и архив ошибок	
Глава 6 Режимы работы и режимы регулирования	46
6.1 Шаги общей процедуры запуска режима регулирования	46
6.2 Режим скорости (-3, 3)	
6.2.1 Аналоговый режим скорости	
6.2.2 Режим скорости DIN	51
6.3 Режим крутящего момента (4)	52
6.3.1 Аналоговый режим крутящего момента	52
6.4 Режим позиционирования (1)	53
6.4.1 Режим работы по таблицам позиций	53

6.5 Реж	им импульса/направления (-4)	57
6.5.1	Режим мастер-станции/слейв-станции:	58
6.6 Реж	им определения начала отсчета (6)	59
Глава 7	Процесс настройки каскадов регулирования сервосистемы	68
7.1 Авто	онастройка	58
7.1.1	. Параметры для автонастройки	<u> </u>
7.1.2	? Запуск автонастройки	<u> </u>
7.1.3	3 Проблемы при автонастройке	70
7.1.4	Адаптация после автонастройки	70
7.2 Ручн	ная настройка	71
7.2.1	. Настройка регулятора скорости	71
7.2.2	? Настройка регулятора положения	74
7.3 Фак	торы, влияющие на результаты настройки	76
Глава 8	Аварийная сигнализация и локализация неисправностей	77
Глава 9	Список параметров контроллера мотора серии СММВ	79
9.1 F002	1	79
9.2 F002	2	31
9.3 F003	3	33
9.4 F004	4 8	36
9.5 F00	5 8	38
Глава 10	Связь	39
10.1 Cx	ема линий RS232	39
10.1 Cxe 10.1.	ема линий RS232	39 39
10.1 Cxe 10.1. 10.1.	ема линий RS232 1 Соединение "от точки к точке" 2 Многоточечное соединение	39 39 39
10.1 Cxo 10.1. 10.1. 10.2 Tpa	ема линий RS232 1 Соединение "от точки к точке" 2 Многоточечное соединение анспортный протокол	39 39 39 39 39
10.1 Cx 10.1. 10.1. 10.2 Tpa 10.2.	ема линий RS232	39 39 39 39 39
10.1 Cx 10.1. 10.1. 10.2 Tpa 10.2. 10.2.	ема линий RS232	39 39 39 39 39 39
10.1 Схо 10.1. 10.1. 10.2 Тра 10.2. 10.2. 10.3 Пр	ема линий RS232	39 39 39 39 39 30 30
10.1 Схо 10.1. 10.2 Тра 10.2. 10.2. 10.3 Пр 10.3.	ема линий RS232	39 39 39 39 39 30 90 90
10.1 Схо 10.1. 10.2 Тра 10.2. 10.2. 10.3 Пр 10.3. 10.3.	ема линий RS232	39 39 39 39 39 39 30 90 90 90

Глава 1 Безопасность и условия применения изделия

1.1 Безопасность

1.1.1 Указания по безопасности при вводе в эксплуатацию, ремонте и выводе из эксплуатации

Предупреждение

Опасность из-за удара электротоком

- Если кабель не подсоединен к разъему X2.
- При размыкании соединительных кабелей под напряжением.

Прикосновение к токоведущим частям может повлечь за собой тяжелые травмы, в том числе со смертельным исходом.

Изделие разрешается эксплуатировать только в полностью смонтированном состоянии и при условии, что приняты все меры защиты.

Перед прикосновением к токоведущим частям при проведении работ по техническому обслуживанию, ремонту и очистке, а также после длительных перерывов в эксплуатации: Обесточьте электрооборудование с помощью главного выключателя и заблокируйте его от повторного включения.

После выключения подождите минимум 10 минут до окончания разрядки и убедитесь в отсутствии напряжения, прежде чем выполнять какие-либо действия на контроллере. Убедитесь в том, что лампа контроля зарядки впереди на контроллере выключена.

Примечание

Опасность, вызванная непредусмотренным перемещением мотора или привода

- Убедитесь в том, что возможное перемещение никому не угрожает.
- Проведите оценку рисков согласно Директиве ЕС по машинному оборудованию.
- На основании этой оценки рисков разработайте систему безопасности для всей установки с учетом всех встроенных элементов. К ней также относятся электрические приводы.
 - Шунтирование предохранительных устройств является недопустимым.

1.1.2 Защита от удара электротоком за счет защитного сверхнизкого напряжения (PELV)

Предупреждение

- Для электропитания следует использовать только цепи защитного сверхнизкого напряжения согласно IEC/EN 60204-1 (Protective Extra-Low Voltage, PELV). Также соблюдайте общие требования к электрическим цепям защитного сверхнизкого напряжения (PELV) в соответствии с IEC/EN 60204-1.
- Применяйте только такие источники тока, которые обеспечивают надежную электроизоляцию рабочего напряжения согласно IEC/EN 60204-1.

За счет использования электрических цепей PELV (электрооборудование машин, общие требования) обеспечивается защита от удара электротоком (защита от прямого и косвенного прикосновения) согласно IEC/EN 60204-1.

1.1.3 Использование по назначению

Устройство СММВ-АS-0х предназначено для

- Применения в электрошкафах для питания сервомоторов переменного тока и относящегося к ним регулирования крутящих моментов (ток), частоты вращения и позиции

Контроллер CMMB-AS-0х предназначен для монтажа на машинном оборудовании или в системах автоматизации и требует использования:

- В технически безупречном состоянии
- В оригинальном состоянии без каких-либо самовольных изменений
- В рамках предельных значений изделия, заданных техническими характеристиками
- В сфере промышленности

Изделие предназначено для использования в сфере промышленности. В случае применения за пределами промышленной среды, например в районах со смешанной застройкой (из жилых и производственных зданий), при необходимости следует принять меры по устранению радиопомех.

Примечание

В случае ущерба, возникшего из-за несанкционированного вмешательства или использования не по назначению, выставление производителю гарантийных претензий и претензий по возмещению ущерба исключается.

1.2 Требования к применению изделия

- Предоставьте эту документацию конструктору, монтажнику и персоналу, ответственному за ввод в эксплуатацию установки или системы, в которой используется данное изделие.
- Обеспечьте постоянное соблюдение заданных условий, описанных в этой документации. При этом также учитывайте требования документации на дополнительные элементы и модули.

Соблюдайте действующие законодательные нормативы на область применения оборудования, а также:

- Нормативные предписания и стандарты
- Регламенты органов технического контроля и страховых компаний
- Государственные постановления

1.2.1 Условия транспортировки и хранения

- При транспортировке и хранении защищайте изделие от указанных ниже недопустимых нагрузок:
 - Механическая нагрузка
 - Недопустимые температуры
 - Влажность
 - Агрессивные среды
- Храните и транспортируйте изделие в оригинальной упаковке. Оригинальная упаковка обеспечивает достаточную защиту от обычных воздействий.

1.2.2 Технические требования

Общие, обязательные для соблюдения указания по надлежащему и безопасному использованию изделия приведены ниже.

- Выполняйте приведенные в технических характеристиках условия подключения и окружающей среды изделия и всех подсоединяемых элементов.
 Соблюдение предельных значений и ограничений по нагрузке установлено требованиями, чтобы обеспечивать эксплуатацию изделия согласно применимым директивам о безопасности.
- Учитывайте указания и предупреждения, содержащиеся в настоящей документации.

1.2.3 Квалификация специалистов (требования к персоналу)

К вводу изделия в эксплуатацию допускаются только квалифицированные электрики, которые успешно изучили:

- подключение и эксплуатацию электрических систем регулирования
- действующие предписания по эксплуатации технических систем безопасности
- действующие предписания по предотвращению несчастных случаев и охране труда
- документацию на изделие

1.2.4 Область применения и разрешения

Сертификаты и декларацию о соответствии для данного изделия можно найти на сайте www.festo.com/sp.

Изделие имеет сертификат организации Underwriters Laboratories Inc. (UL) для США и Канады и отмечено следующим символом:

UL listing mark for Canada and the United States

Глава 2 Введение

2.1 Обзор продукции

Контроллер мотора серии СММВ представлен четырьмя моделями для четырех разных классов мощности. Вместе с сервомоторами серии ЕММВ серия СММВ образует платформу сервосистемы с номинальной мощностью от 100 до 750 Вт.

2.1.1 Контроллер мотора СММВ

Контроллер мотора СММВ предлагается в следующих моделях:

Табл. 2-1: Тип модели

Модель	Мощность
CMMB-AS-01	100 Вт
CMMB-AS-02	200 Вт
CMMB-AS-04	400 Вт
CMMB-AS-07	750 Вт

Рис. 2-1: Код заказа контроллера мотора

2.1.2 Сервомотор ЕММВ

К сервомоторам серии ЕММВ относятся двигатели с номинальной мощностью от 100 до 750 Вт, оснащенные однооборотным абсолютным энкодером.

Рис. 2-2: Код заказа сервомотора

2.1.3 Кабели NEBM

Кабели NEBM служат для коммуникации Plug and Play ("подключай и работай") между контроллером мотора и сервомоторами и представлены в четырех вариантах разной стандартной длины.

Стандартный кабель				
Длина (единица измерения: м)	Тип			
2,5	NEBM-H6G4-K-2.5-Q13N-LE4			
5	NEBM-H6G4-K-5-Q13N-LE4			
7,5	NEBM-H6G4-K-7.5-Q13N-LE4			
10	NEBM-H6G4-K-10-Q13N-LE4			
Гибкий кабель (может использоваться в энергоцепи)				
Гибкий кабель (может использовать	ся в энергоцепи)			
Гибкий кабель (может использовать Длина (единица измерения: м)	ся в энергоцепи) Тип			
Гибкий кабель (может использовать Длина (единица измерения: м) 2,5	ся в энергоцепи) Тип NEBM-H6G4-E-2.5-Q13N-LE4			
Гибкий кабель (может использовать Длина (единица измерения: м) 2,5 5	ся в энергоцепи) Тип NEBM-H6G4-E-2.5-Q13N-LE4 NEBM-H6G4-E-5-Q13N-LE4			
Гибкий кабель (может использовать Длина (единица измерения: м) 2,5 5 7,5	ся в энергоцепи) Тип NEBM-H6G4-E-2.5-Q13N-LE4 NEBM-H6G4-E-5-Q13N-LE4 NEBM-H6G4-E-7.5-Q13N-LE4			

Табл. 2-3: Кабель энкодера

Стандартный кабель				
Длина (единица измерения: м)	Тип			
2,5	NEBM-REG6-K-2.5-Q14N-REG6			
5	NEBM-REG6-K-5-Q14N-REG6			
7,5	NEBM-REG6-K-7.5-Q14N-REG6			
10	NEBM-REG6-K-10-Q14N-REG6			
Гибкий кабель (может использоваться в энергоцепи)				
Длина (единица измерения: м)	Тип			
2,5	NEBM-REG6-E-2.5-Q14N-REG6			
5	NEBM-REG6-E-5-Q14N-REG6			
7,5	NEBM-REG6-E-7.5-Q14N-REG6			
10	NEBM-REG6-E-10-Q14N-REG6			

Табл. 2-4: Соединительный кабель

Стандартный кабель				
Длина (единица измерения: м)	Тип			
2,5	NEBM-H7G2-K-2.5-Q14N-LE2			
5	NEBM-H7G2-K-5-Q14N-LE2			
7,5	NEBM-H7G2-K-7.5-Q14N-LE2			
10	NEBM-H7G2- K-10-Q14N-LE2			
Гибкий кабель (может использоваться в энергоцепи)				
Длина (единица измерения: м)	Тип			
2,5	NEBM-H7G2-E-2.5-Q14N-LE2			
5	NEBM-H7G2-E-5-Q14N-LE2			
7,5	NEBM-H7G2-E-7.5-Q14N-LE2			
10	NEBM-H7G2-E-10-Q14N-LE2			

2.2 Внешний вид устройства

Рис. 2-3: Внешний вид устройства

Глава 3 Подключение контроллера мотора СММВ

3.1 Подключение механической части

3.1.1 Требования к окружающей среде

Окружающая среда	Требование
Температура применения	0 – 40 °C
Влажность применения	5 – 95 % отн. влажн. (без конденсации)
Температура хранения	-10 – 70 °C
Влажность хранения	5 – 95 % отн. влажн. (без конденсации)
Требования к монтажу	Внутри помещений без солнечного освещения, едкого газа, воспламеняющегося газа или пыли.
Высота установки над уровнем моря	Менее 2000 м, падение мощности между 1000 м и 2000 м
Колебания	Менее 5,9 м/с², 10~60 Гц (не применять в точке резонанса)
Степень защиты	IP20

Табл. 3-1: Требования к окружающей среде

3.1.2 Условия монтажа

Рис. 3-1: Монтажное положение, расстояния и свободное пространство для монтажа

Примечание

Контроллер мотора должен встраиваться в электрошкаф, обеспечивающий окружающую среду со степенью загрязнения 2. Направление монтажа – вертикальное, чтобы обеспечить достаточный конвективный поток через корпус контроллера. Должны соблюдаться указанные на рис. 3-1 расстояния и зазоры. Убедитесь в том, что контроллер мотора надежно закреплен двумя винтами М5. Не вставляйте ничего в вентиляционные отверстия контроллера. Не перекрывайте вентиляционные отверстия контроллера. Используйте только указанные производителем элементы для монтажа снаружи/принадлежности.

Охлаждающий радиатор СММВ-АS-01, СММВ-АS-02 охлаждается за счет естественной конвекции.

Охлаждающий радиатор СММВ-АS-04, СММВ-АS-07 охлаждается внутренним вентилятором.

Предупреждение

При использовании внешнего тормозного резистора оставьте достаточно места вокруг резистора, так как он может нагреваться до высоких температур. Горючие материалы не должны соприкасаться с тормозным резистором или находиться вблизи него. В противном случае существует риск возгорания.

3.2 Подключение электрической части

3.2.1 Контроллер мотора серии СММВ, вид спереди

Рис. 3-2: Вид спереди

Вентилятор контроллера является сменным элементом. В случае неисправности вентилятора откройте крышку вентилятора и замените его вентилятором с такими же параметрами питания. Действуют следующие технические требования к вентилятору:

Питание: 12 В пост. тока, 0,12 А, размеры: 40 x 40 x 10 мм

3.2.2 Интерфейс питания (Х2)

Табл. 3-2: Интерфейс питания

Сечение жилы для всех контактов: от AWG 22 (0,32 мм²) до AWG 14 (2,1 мм²)

3.2.3 Интерфейс RS232 (X3)

Табл. 3-3: Интерфейс RS232

3.2.4 Многофункциональный интерфейс (Х4)

					•				
	19 21	1 23	3 2	5 2	7 29	31	33	35	
	AIN1+(/MA) AIN1-(,	/MB) AIN2+((/MZ) AIN	N2- MA+((MA) MA-	MB+(MB	B) MB-	MZ+(N	NZ)
Ī	20	22	24	26	28	30	32	34	36
	OUT5	+5 V	GND	ENCO_Z	ENCO_/Z	ENCO_B	ENCO_/B	ENCO_A	ENCO_/A
li	OUT1+ OUT	1- OUT	2+ OU	T2- OU	T3 OUT4	ц сомо	VDD	VEE	
11	1 3	5	7	79	11	13	15	17	
	СОМІ	DIN1	DIN2	DIN3	DIN4	DIN5	DIN6	DIN7	MZ-
	2	4	6	8	10	12	14	16	18

Рис. 3-3: Многофункциональный разъем

Табл. 3-4: Обозначения Х4

Контакт	Функция		
DIN1-DIN7	Дискретный вход VinH (активно): 12,5 30 В пост. тока VinL (неактивно): 0 5 В пост. тока Входная частота: <1 кГц		
СОМІ	Опорный потенциал для дискретных входов		
OUT1+ / OUT1-	Дискретный выход		
OUT2+ / OUT2-	Максимальный выходной ток: 100 мА		
OUT3 / OUT4 / OUT5	Дискретный выход Максимальный выходной ток: 20 мА		
СОМО	Опорный потенциал для дискретных выходов		
MA+ / MA-	Вход импульса/направления		
MB+ / MB-	Входное напряжение: 3,3 24 В		
MZ+ / MZ-	Максимальная частота: 500 кі ц		
ENCO_A+ / ENCO_A-	Выход энкодера		
ENCO_B+ / ENCO_B-	Напряжение: Voh=3,4 B, Vol=0,2 B		
ENCO_Z+ / ENCO_Z-	Максимальныи ток: ±20 мА, максимальная частота: 10 МІ ц		
AIN1+ / AIN1-AIN2+ / AIN2-	Диапазон сигнала Разрешение: 12 бит, входное сопротивление: 350 кОм Ширина аналоговой полосы пропускания: 1 кГц, диапазон входного напряжения: -10 В +10 В		
+5 V / GND	Выходное напряжение 5 В пост. тока Максимальный ток: 100 мА		
VDD/VEE	Выходное напряжение 24 В пост. тока Диапазон напряжения: 24 В пост. тока ± 20 %, максимальный ток: 300 мА		

На следующем рисунке показана схема линий X4 со стандартной функцией входов/выходов. Следующие функции входов/выходов можно назначить при помощи кнопок управления и цифровой индикации или программного обеспечения ПК. См. в разделе 5.5 более подробную информацию по функциям входов/выходов.

Рис. 3-4: Схема линий Х4

Рис. 3-5: Дискретные выходы, схема линий PNP

Контроллеры моторов серии СММВ не поддерживают прямой управляющий выход для тормоза мотора. Рекомендуем пользоваться контактом OUT1 или OUT2, чтобы активировать внешнее реле, которое управляет тормозом мотора. Активация представлена ниже:

Рис. 3-6: Активация тормоза мотора

3.2.5 Интерфейс энкодера (Х5)

Табл. 3-5: Интерфейс энкодера

3.3 Схема линий сервосистемы СММВ

Рис. 3-7: Схема линий сервосистемы СММВ

Предупреждение

Опасность из-за удара электротоком

Перед выполнением работ по подключению или техническому обслуживанию на контроллере СММВ выключите электропитание. После этого подождите минимум 10 минут, прежде чем прикасаться к контактам, и убедитесь в том, что светодиод зарядки передней панели контроллера выключен.

Во время эксплуатации держите следите за тем, чтобы все крышки и дверцы электрошкафа были закрыты.

Категорически запрещено убирать предохранительные устройства и браться за токоведущие детали и элементы.

Правильно подсоедините защитный провод, прежде чем включить контроллер.

Предупреждение

Опасность из-за удара электротоком

Контроллер мотора СММВ использует сетевое напряжение для питания логических схем. Даже если выключена подача напряжения питания к контроллеру, и шина постоянного тока разряжена (светодиод зарядки на передней панели выключен), вход управляющего напряжения X2: L1C/L2C все еще может проводить активное сетевое напряжение. Если светодиод на передней стороне контроллера мотора горит, следует ожидать появления сетевого напряжения на X2: L1C/L2C.

Примечание

Пользуйтесь проводами NEBM (см. 2.1.3), чтобы подсоединить контроллер мотора СММВ к сервомотору EMMB, и соедините защитный провод линии мотора NEBM с левым винтом защитного заземления на передней стороне контроллера мотора.

Не подвергайте кабели NEBM или кабели на разъеме X2 воздействию механических нагрузок. Выполняйте требования международных и местных стандартов и законодательства по укладке кабелей и подключению токоведущих элементов в электрошкафу, таких как плавкие предохранители, силовые выключатели и контакторы, относящиеся к сетевому питанию контроллера мотора.

Применяйте для подключения сетевого питания контроллера мотора специальные высокочастотные фильтры, чтобы соблюдалась Директива по ЭМС и стандарты.

3.3.1 Выбор плавких предохранителей, тормозных резисторов и силовых выключателей

Плавкие предохранители, тормозные резисторы и силовые выключатели следует выбирать согласно указанным ниже техническим требованиям:

Табл. 3-6: Рекомендуемый плавкий предохранитель

	Технические требования к плавкому	Технические требования к плавкому	
Модель	предохранителю питания линий	предохранителю питания нагрузки	
	управления (предохранитель 1)	(предохранитель 2)	
CMMB-AS-01	1,0 А/250 В перем. тока	3,5 А/250 В перем. тока	
CMMB-AS-02	1,0 А/250 В перем. тока	3,5 А/250 В перем. тока	
CMMB-AS-04	1,0 А/250 В перем. тока	7 А/250 В перем. тока	
CMMB-AS-07	1,0 А/250 В перем. тока	15 А/250 В перем. тока	

Табл. 3-7: Рекомендуемый тормозной резистор

Модель	Сопротивление [Ом]	Мощность [Вт]	Рабочее напряжение [В пост. тока]	
CMMB-AS-01				
CMMB-AS-02	75	100	500	
CMMB-AS-04	75	100	500	
CMMB-AS-07				

Табл. 3-8: Рекомендуемый силовой выключатель

Модель	Расчетный ток [А]	Полюса [Р]	Напряжение [В перем. тока]	Характер срабатывания	
CMMB-AS-01	10	้า			
CMMB-AS-02	10	2	230	C	
CMMB-AS-04	16	้า	250	C	
CMMB-AS-07	10	Z			

Глава 4 Настройка (наладка) контроллера со светодиодной панелью управления

После соединения электропроводки сервосистемы контроллер мотора можно настроить для желаемого применения согласно действующим стандартам.

Контроллер мотора СММВ снабжен светодиодной панелью управления на передней стороне. Она состоит из 5-разрядного светового индикатора и четырех кнопок управления. Благодаря этой светодиодной панели возможны следующие общие функции:

- Индикация в реальном времени фактических значений на световом индикаторе. Отображаемое значение можно выбрать в меню F001. В качестве стандартной индикации будет показано Real_Speed_RPM (d1.25). Другие возможности выбора см. в главе 9, табл. 9-1.
- Мигающая индикация для указаний по ошибкам и предупредительных указаний
- Индикация параметров контроллера и их изменения
- Легкая наладка контроллера с помощью специальных функций меню EASY и tune

Различные функции и группы параметров расположены в структуре меню. 4 экранные кнопки можно использовать для навигации по структуре меню, выбора отдельных параметров, изменения значений и получения доступа к дополнительным функциям.

4.1 Использование панели управления

Табл. 4-1: Внешний вид панели управления

▲	Для увеличения значения.
▼	Для уменьшения значения.
УСТАНОВКА [SET]	Откройте меню. Проверьте значения параметра. Подтвердите настройку, чтобы перейти к следующему шагу. Когда на индикаторе появятся внутренние 32-битные данные, нажмите и удерживайте нажатым переключатель старших/младших 16 бит.
Общее мигание	Ошибка или предупреждение. Если загорается на 1 с, а потом не горит в течение 1 с, это указывает на ошибку контроллера. Последовательное мигание (быстро по очереди загораются 3 раза) указывает на то, что контроллер находится в состоянии предупреждения.

4.2 Структура меню и навигация по панели управления

На следующей блок-схеме показана основная структура панели управления. Пользователь может в указанном порядке выбирать отдельные параметры, изменять значения или получать доступ к специальным функциям. Список всех доступных параметров и значений представлен в главе 9.

Рис. 4-1: Настройка параметров

4.3 Функция "Easy Use" (Простое применение)

Функция "Easy Use" помогает пользователям быстро настроить контроллер мотора СММВ для решения основных задач. Светодиодная панель управления проводит пользователя шаг за шагом по настройке важнейших параметров для подготовки контроллера к требуемым условиям работы. Параметры регулирования контроллера мотора предварительно настроены на обычно применяемые стандартные значения, подходящие для широкого спектра применений. Кроме того, можно использовать надежную функцию автоматической настройки для более точной идентификации используемой механической части. Затем пользователю нужно только адаптировать тонкую настройку контроллера с помощью параметра жесткости.

4.3.1 Процедура наладки с помощью функции Easy Use

Предусмотрена очень простая процедура наладки контроллера мотора CMMB с помощью функции Easy Use. Шаг 1: откройте параметры в меню панели управления EASY и подтвердите их или настройте по очереди. Можно подтвердить автоматически определенный тип мотора, выбрать интерфейс управления, настроить основные параметры, определяющие работу интерфейса, и выбрать режимы применения механической части и устройств управления. Затем нужно сохранить эти параметры и выполнить перезапуск контроллера. После такой настройки контроллер готов к эксплуатации в соответствующем режиме работы входов/выходов, а параметры регулирования устанавливаются на подходящие стандартные значения. Контроллер готов для выполнения множества стандартных задач, можно провести его тестирование.

Шаг 2: при необходимости дальнейшего улучшения качества регулирования контроллера откройте меню управления tunE. С помощью функций в этом меню контроллер может запустить работу мотора в режиме автонастройки, чтобы определить нагрузку на мотор и измерить инерцию (момент инерции) масс. Затем контроллер рассчитывает коэффициент моментов инерции масс, который соответствует соотношению измеренного момента инерции масс и момента инерции масс мотора. В зависимости от рассчитанного соотношения моментов инерции масс контроллер определяет подходящее значение жесткости для серворежима. С помощью соотношения моментов инерции масс и значения жесткости контроллер автоматически адаптирует параметры регулирования.

Шаг 3: в меню tunE можно изменять значение жесткости вверх/вниз просто с помощью экранных кнопок управления. Настройку жесткости также можно выполнить во время теста на применение, во время получения контроллером команд через выбранный командный интерфейс. После определения оптимального значения жесткости нужно сохранить параметры tunE, и контроллер готов к эксплуатации. Если путем настройки жесткости не удалось достичь желаемой мощности, то для дальнейшей оптимизации можно использовать программное обеспечение ПК "CMMB Configurator" (конфигуратор CMMB).

Рис. 4-2: Схема выполнения функции Easy Use

4.3.2 Меню EASY – схема выполнения и описание

В представленной ниже схеме выполнения и таблице подробно поясняется способ настройки в меню EASY.

Рис. 4-3: Схема выполнения меню EASY

Информация

Выход из меню происходит автоматически, если в течение 30 с не совершено ни одного действия по управлению. Тогда пользователь должен выполнить перезапуск. Введенные данные вступают в действие сразу, но их следует сохранить с помощью ЕАОО.

Табл. 4-2: Параметры меню EASY

Свето- диод	Параметр	Описание	Стан- дартно
EA01	Тип мотора	Для нового контроллера мотора настроен тип мотора "00", а световая индикация отображает "3030". Если контроллер мотора подсоединен к разрешенному мотору, то происходит автоматическое определение и сохранение типа мотора.Позднее сравнивается тип мотора, сохраненный в памяти контроллера, с типом подсоединенного мотора. Если они отличаются, то на световой индикации мигает "FFFF". Пользователь должен подтвердить значение EA01, сохранить данные мотора 	/
EA02	Режим работы	Режим работы касается внутренних настроек интерфейса контроллера, первого режима работы после включения и стандартных настроек для функций DIN и OUT (см. табл. 4-3).0: CW/CCW, режим импульса/направления 1: P/D, режим импульса/направления 2: A/B, режим импульса/направления Peжим работы = -4 Peжим работы = -42: A/B, режим импульса/направления Peжим работы = -4 Peжим работы = -43: Аналоговый режим скорости через AIN1 Peжим работы = -3 Peжим работы = -39: Режим работы по таблицам позицийРежим работы = 1	1
EA03	Передаточное число, числитель	Используется, если ЕАО2 установлен на 0-2. Индикатор стандартно отображает значения в десятичном формате.	1000
EA04	Передаточное число, знаменатель	Если число превышает 9999, индикатор переходит на шестнадцатеричный формат.	1000
EA05	Коэффициент передачи аналогового задания по скорости	Используется, если ЕАО2 установлен на 6 или 7. Отношение между напряжением на аналоговом входе и скоростью мотора измеряется в об/мин/В. Для эксплуатации контроллера с сервомоторами EMMB-AS максимальное значение составляет 374, а максимальная скорость – 3740 об/мин/10 В. Более подробную информацию см. в разделе 9.3 (d3.29).	300
EA06	 Тип нагрузки Применение Концевой выключатель 	Значение каждой позиции световой индикации справа налево. (1) Тип нагрузки, воздействия контура регулирования. 0: Холостой ход 1: Привод с зубчатым ремнем 2: Шпиндельный линейный привод	1001

	4. Полярность выхода аварийной сигнализации	 (2) Применение, воздействия контура регулирования. 0: Р2Р 1: СNС 2: Режим мастера/слейва (3) Концевой выключатель. 0: Стандартные настройки контроллера 1: Удалить функцию концевого выключателя (4) Полярность ОUT5 0: Размыкатель 1: Замыкатель 	
EA07	Метод перемещения к началу отсчета	См. раздел 6.6	0
EAOO	Сохранение параметров	 "1", чтобы сохранить параметры регулирования и мотора. "2", чтобы сохранить параметры регулирования и мотора и перезапустить сервосистему. "3", для перезапуска серводвигателя. "10", чтобы инициализировать параметры регулирования. Примечание: После изменения типа мотора в ЕАО1 пользователь должен сохранить параметры регулирования и мотора, а также перезапустить контроллер. После сохранения параметров сервосистема настраивает параметры регулирования в соответствии с типом нагрузки и применением (назначением). 	/

В результате настройки режима работы в EAO2 конфигурация дискретных входов/выходов (I/O) контроллера задается по-другому, в зависимости от настройки режима работы и так, как указано в следующей таблице:

Табл И.З	Northeast	กกผับผ กก			FA02
140/1.4-2	. naci	ρομική πο	умолчанию	применительно к	LAUZ

	Режим импульса/направления			Таблица	Диапазон сигнала для регулирования скорости		Управле- ние
	CW/CCW	Р/D (стан- дартно)	A/B	позиций	Канал 1	Канал 2	с помощью RS232
EA02	0	1	2	9	6	7	8
DIN1	Enable	Enable	Enable	Enable	Enable	Enable	
DIN2	Reset Errors	Reset Errors	Reset Errors	Reset Errors	Reset Errors	Reset Errors	
DIN3	Start Homing	Start Homing	Start Homing	Start Homing	Start Homing	Start Homing	
DIN4	P limit+	P limit+	P limit+	PosTable Idx0	P limit+	P limit+	P limit+
DIN5	P limit-	P limit-	P limit-	PosTable Idx1	P limit-	P limit-	P limit-
DIN6				Start PosTable			
DIN7	Home-Signal	Home- Signal	Home- Signal	Home-Signal	Home-Signal	Home- Signal	Home- Signal

OUT1	Ready	Ready	Ready	Ready	Ready	Ready	Ready
OUT2	Motor Brake	Motor Brake	Motor Brake	Motor Brake	Motor Brake	Motor Brake	Motor Brake
OUT3	Pos Reached	Pos Reached	Pos Reached	Pos Reached	Velocity reached	Velocity reached	Pos Reached
OUT4	Zero Speed	Zero Speed	Zero Speed	PosTable Active	Zero Speed	Zero Speed	Zero Speed
OUT5	Error	Error	Error	Error	Error	Error	Error

Примечание

Обратите внимание на отличие показателя настройки (по умолчанию) конфигурации дискретных I/O после настройки режима работы в EAO2 или после изменения типа мотора. Когда настройки изменяются, дискретным входам, которые до этого не использовались, из-за новых настроек по умолчанию может быть назначена активная функция, в результате чего сигналы, присутствующие на дискретных входах, могут ошибочно активировать функции DIN. Рекомендуется продолжить, перейдя к настройкам в меню EASY при неподсоединенном соединителе X4 или отсоединении подачи электропитания к дискретным входам. Настоятельно рекомендуется работа с меню EASY при выключенном питании нагрузки. Снова проверьте схему электропроводки X4, прежде чем включить питание нагрузки.

Информация

Меню EASY и tunE изначально созданы для настроек с использованием кнопок управления. Из соображений безопасности меню EASY и tunE предлагают только параметры EAOO, EAO1 и tnOO, если возникает один из следующих случаев. Случай 1: пользователь инициализирует параметры произвольно. Случай 2: тип мотора, который отличается от подтвержденного в EEAO1, подсоединяется к контроллеру. Случай 3: настройка типа мотора изменена какимлибо способом, отличным от применения EAO1 (например, программными средствами ПК). После подтверждения типа мотора в EAO1 содержимое записей в меню для предустановленных значений и меню снова становятся полнофункциональными.

На следующих страницах представлены четыре разные конфигурации функций I/O на базе разных режимов работы в EAO2, а также типичные схемы соединений для соединителей I/O X4. Конфигурация режима импульса/направления, режим работы 0, 1 или 2 в EAO2:

Рис. 4-4: Схема электропроводки Х4 в режиме импульса/направления

Конфигурация аналогового режима регулирования, режим работы 6 или 7 в ЕАО2:

Рис. 4-5: Схема электропроводки Х4 в аналоговом режиме регулирования

Режим работы по таблицам позиций, режим работы 9 в EA02:

Рис. 4-6: Схема электропроводки Х4 в режиме работы по таблицам позиций

Режим регулирования RS232, режим работы 8 в EA02:

Рис. 4-7: Схема электропроводки X4 в режиме регулирования RS232

4.3.3 Меню tunE – схема выполнения и описание

Меню управления содержит параметры и функции для автонастройки с измерением момента инерции масс и настройкой контура серворегулирования по одному параметру, а именно – жесткости.

После выполнения необходимых действий в меню EASY контроллер задает значение жесткости и соотношение моментов инерции масс на основании реальных оценочных значений в соответствии с типом нагрузки и настройками применения в EAO6.

Если соотношение моментов инерции масс можно вычислить из характеристик механической части оборудования и полезной нагрузки, то полученное значение можно ввести напрямую в tnO2 (см. также табл. 4-4). Соотношение моментов инерции масс не должно быть на 100 % точным для достижения целесообразной мощности серводвигателя только путем настройки жесткости. Однако, чем точнее соотношение моментов инерции масс, тем лучше алгоритм настройки сможет адаптировать параметры регулирования друг к другу. В связи с этим настойчиво рекомендуем определить точное соотношение моментов инерции.

В представленной ниже схеме выполнения и таблице подробно поясняется способ настройки в меню tunE.

Записать "1", чтобы сохранить все параметры Записать "2", чтобы сохранить все параметры и перезапустить сервосистему

Рис. 4-8: Схема выполнения для меню tunE

Табл. 4-4: Параметры tunE

Свето- диод	Параметр	Описание	Стандартно
tn01	Жесткость	Уровень жесткости регулирования от 0 до 31 определяет ширину полосы пропускания (ВW) регулирования скорости и регулирования положения (см. табл. 4-5). Чем больше значение, тем выше жесткость. Если для этого параметра выбрано слишком большое значение, усиление слишком резко меняется, и оборудование начинает работать нестабильно. При настройке tn01 при помощи кнопок "вверх" и "вниз" на панели управления введенные значения сразу начинают применяться, что позволяет выполнять изменение небольшими шагами.	Зубчатый ремень: 10 Шпиндель: 13
tn02	Inertia_ Ratio	Соотношение общего момента инерции и момента инерции мотора (единица: 0,1), например, равное 30, соответствует соотношению моментов инерции масс 3. Это значение становится предустановленным значением с помощью функции EASY и измеряется с помощью функции измерения инерции в меню tunE (tn03). При настройке tn02 при помощи кнопок "вверх" и "вниз" данные сразу же начинают применяться, что позволяет производить изменение небольшими шагами.	Зубчатый ремень: 50 Шпиндель: 30
tn03	Tuning_ Method	 Установка значения 1 запускает измерение момента инерции масс в режиме автонастройки. Контроллер активируется, и мотор выполняет колебательное движение менее чем 1 с. При успешной настройке параметр Tuning_Method (метод настройки) устанавливается на 1. Измеренный момент инерции масс используется для определения параметра Inertia_Ratio (соотношение моментов инерции). Жесткость устанавливается в зависимости от соотношения моментов инерции масс в диапазоне от 4 до 12. Параметры контура регулирования настраиваются в соответствии с жесткостью и Inertia_Ratio (соотношение моментов инерции). В случае возникновения ошибки при измерении момента инерции масс в параметре Tuning_Method (метод настройки) отображается причина: О: По какой-либо причине не удалось активировать контроллер. 1: Невозможно измерить момент инерции масс из-за слишком слабого движения или низкого тока. -2: Измеренное значение Inertia_Ratio (соотношение моментов инерции) превышает 250 (соотношение моментов инерции масс > 25). Такой результат возможен в том случае, если контур регулирования все же не был настроен. -4: Полученное значение Inertia_Ratio (соотношение моментов инерции масс > 50). Это неясный результат. В случае 0, -1, -2, -4 параметр Inertia_Ratio устанавливается на 30, а в случае -3 – на измеренное значение; жесткость устанавливается на 7-10 Одновременно параметры регулирования устанавливается на 7-10 Одновременно параметры регулирования устанавливается на 7-10 измеренное Inertia_Ratio (соотношение моментов инерции) начало применяты 50 и на настроеные значение кость устанавливается на 7-10 измеренное Inertia_Ratio (соотношение моментов инерции) начало применяться для -3, нужно подтвердить значение tnO2 при помощи кнопки выбора SET. 	

tn04	Safe_Dist	Расстояние для измерения момента инерции масс (единица: 0,01 об), например, равное 22, соответствует 0,22 оборота двигателя. Максимальное значение равно 0,4 оборота.	22
tn00	Saving parameters	 "1", чтобы сохранить параметры регулирования и мотора. "2", чтобы сохранить параметры регулирования и мотора и перезапустить сервосистему. "3", для перезапуска серводвигателя. "10", чтобы инициализировать параметры регулирования. Примечание. При изменении типа мотора пользователь должен сохранить параметры регулирования и мотора, а также перезапустить контроллер. 	

В алгоритме автонастройки используется следующая таблица для настроек ширины полосы пропускания контура регулирования по отношению к значению жесткости:

Жесткость	Крр/[0,01 Гц]	Кvp/[0,1 Гц]	Выходной фильтр [Гц]	Жесткость	Крр/[0,01 Гц]	Кvp/[0,1 Гц]	Выходной фильтр [Гц]
0	70	25	18	16	1945	700	464
1	98	35	24	17	2223	800	568
2	139	50	35	18	2500	900	568
3	195	70	49	19	2778	1000	733
4	264	95	66	20	3334	1200	733
5	334	120	83	21	3889	1400	1032
6	389	140	100	22	4723	1700	1032
7	473	170	118	23	5556	2000	1765
8	556	200	146	24	6389	2300	1765
9	639	230	164	25	7500	2700	1765
10	750	270	189	26	8612	3100	1765
11	889	320	222	27	9445	3400	∞
12	1056	380	268	28	10278	3700	∞
13	1250	450	340	29	11112	4000	∞
14	1500	540	360	30	12500	4500	∞
15	1667	600	392	31	13889	5000	∞

Табл. 4-5: Настройки жесткости и контура регулирования

Информация

Если настройка жесткости или соотношения моментов инерции масс приводит к величине значения Кvp более 4000, дальнейшее повышение жесткости нецелесообразно

Примечание

Процедура EASY должна проводиться первой и завершиться, прежде чем можно будет использовать tunE.

Измерение момента инерции масс может вызывать вибрацию машинного оборудования, поэтому будьте готовы незамедлительно выключить контроллер.

Обеспечьте достаточную ширину пути для перемещения мотора во время измерения момента инерции масс, чтобы не допустить повреждения машины.

İ

Информация

Причины неудачи при настройке:

- Неправильная схема линий сервосистемы СММВ
- Функция DIN Pre_Enable сконфигурирована, но не активна
- На настраиваемый координатный привод воздействует слишком высокое трение или внешняя сила
- Слишком большой зазор в механической схеме пути между мотором и нагрузкой
- Соотношение моментов инерции масс слишком велико
- Механическая система пути перемещения содержит слишком мягкие элементы (слишком гибкие зубчатые ремни или соединительные муфты)

Дополнительную информацию о процессе настройки см. в главе 7

4.3.4 Шаговый режим (F006)

Предусмотрен шаговый режим для пробных запусков мотора с помощью экранных кнопок светодиодной панели управления, без необходимости в дополнительных командных сигналах. Несмотря на другие настройки для режима работы или скорости, контроллер управляет мотором в шаговом режиме со скоростью, которая настроена через Jog_RPM(d3.52) в режиме для существующей в данный момент скорости (Operation_Mode=-3, см. раздел 6.1).

Этапы для шагового режима:

Шаг 1: Проверьте, правильно ли выполнена вся схема линий, завершен ли процесс ESAY.

Шаг 2: Введите адрес панели управления F003->d3.52, настройте Jog_RPM.

Шаг 3: Вызовите меню панели управления F006, появится адрес d6.40, нажмите ▼ несколько раз, пока не появится d6.15, нажмите ▲ несколько раз, пока не появится d6.25 (это мера защиты, чтобы убедиться, что экранные кнопки ▲ и ▼ правильно функционируют, и не западают в нажатом состоянии).

Шаг 3: Нажмите SET, на световом индикаторе отобразится "Jog".

Шаг 4: Нажмите и удерживайте ▲ для положительного направления или ▼ для отрицательного направления. Контроллер автоматически активируется, а вал мотора вращается со скоростью Jog_RPM. Отпустите ▲ и ▼, чтобы прекратить движение вала мотора.

Если на шаге 4 в промежутке более 20 секунд не нажать ни ▲, ни ▼, шаговый режим перестанет действовать, и для повторного запуска этого режима придется снова начать с шага 1.

Примечание

Сконфигурированные функции концевых выключателей не действуют в шаговом режиме, концевые выключатели игнорируются.

Учитывайте время реакции человека, когда управляете мотором в шаговом режиме. Применяйте для шагового режима "медленные" настройки скорости, в частности, если путь мотора ограничен механической блокировкой.

Информация

Если сконфигурирована цифровая функция ввода Pre_Enable, она должна быть активирована для шагового режима либо через правильный сигнал DIN, либо посредством моделирования DIN. В противном случае шаговый режим приводит к появлению ошибки контроллера "External enable".

4.3.5 Архив ошибок (F007)

Контроллер СММВ сохраняет последние 8 ошибок в архиве ошибок. Вызовите меню панели управления F007, нажмите SET, отобразится значение Error_State (2601.00) (см. раздел 5.7, табл. 5-7). Если на экране появится 0001, это расширенная ошибка; нажмите SET, чтобы отобразить значение Error_State2 (2602.00) (см. раздел 5.7, табл. 5-8).

Нажмите ▲ или ▼, чтобы просмотреть архив ошибок. При взгляде слева направо на световом индикаторе точка 3 указывает на самую старую ошибку, а точка 4 – на самую новую ошибку. Существует маска, указывающая, какие ошибки сохраняются в архиве ошибок; см. подробности в разделе 5.5.

F007 Световой	Пояснение
индикатор	
000.1	Самая последняя ошибка – это расширенная ошибка. Нажмите кнопку "SET", чтобы
	увидеть значение Error_State 2 (2602.00).
02.00	Самая первая ошибка – ошибка рассогласования.
0100	Ошибка резистора с тормозным прерывателем, не являющаяся ни самой первой,
	ни самой последней.

Табл. 4-6: Панель управления. Пример F007

Глава 5 Конфигуратор СММВ, руководство по эксплуатации

В этой главе содержится информация по использованию программного обеспечения ПК для конфигуратора CMMB.

Рис. 5-1: Главное окно конфигуратора СММВ

5.1 Первые шаги

5.1.1 Язык

Переключение языка выполняется через пункт меню Инструменты->Язык [Tools->Language].

5.1.2 Открытие и сохранение файлов проекта

Создайте новый файл проекта через пункт меню Файл->Новый [File->New] или нажатием экранной

кнопки Ц.

Откройте созданный файл проекта через пункт меню **Файл->Открыть [File->Open]** или нажатием экранной

Сохраните файл проекта через пункт меню Файл->Сохранить [File->Save] или нажатием экранной

кнопки 📕 и сохранением его в виде файла.kpjt.

Информация

Сохраняются только окна (список объектов, размер и др.) – параметры в контроллере нельзя сохранить таким способом.
5.1.3 Запуск связи

Нажмите на пункт меню **Связь->Настройки связи [Communication->Communication settings]**. Появится следующее окно:

🖬 Connur	ication	Sett	ings	×
сом				
сом	СОМЗ	•	Refresh	
Baud	38400	•		
COM ID	1		OPEN	

Рис. 5-2: Настройки связи

Выберите подходящий порт COM (если он не показан, нажмите экранную кнопку "Обновить" ["Refresh"]), скорость передачи данных в бодах и идентификатор COM (идентификатор сетевого узла), затем нажмите экранную кнопку "Открыть" ["OPEN"].

Когда связь с контроллером установлена, можно открыть или закрыть окно нажатием экранной кнопки 💶

5.1.4 Идентификатор сетевого узла и скорость передачи данных в бодах

Если в конкретном случае используется более одного контроллера, вам могут понадобиться разные идентификаторы сетевых узлов для разных контроллеров, чтобы отличать их друг от друга.

Идентификатор сетевого узла контроллера можно изменить с помощью пункта меню Контроллер->Свойства контроллера [Controller->Controller Property].

Внутренний адрес	Тип	Имя	Значение	Единица измерения
100B.00	Uint8	Node_ID		ДЕСЯТИЧН.
2FE0.00	Uint16	RS232_Baudrate		Бод

Табл. 5-1: Идентификатор сетевого узла и скорость передачи данных в бодах

Информация

Настройки идентификатора сетевого узла и скорости передачи данных в бодах активируются только после сохранения в памяти и перезапуска.

5.1.5 Объекты (добавление, удаление, справка)

Откройте любое окно со списком объектов, наведите курсор мыши на объект и нажмите с правой стороны. Появится следующее окно выбора:

5	606000	int8	Operation_Mode					
6	604000	uint16	Controlword	644				
7	607A00	int32	Target_Position	Add Delete Help		arget_Position		
8	608100	uint32	Profile_Speed					
9	608300	uint32	Profile_Acc					
10	608400	uint32	Profile_Dec			-		

Рис. 5-3: Объект

Нажмите на **Добавить [Add]** и дважды щелкните на нужном объекте из категории **Каталог объектов [Object Dictionary]**. После этого выбранный объект добавится к списку.

Нажмите на **Удалить [Delete]**. Выбранный объект будет удален из списка.

Чтобы прочитать описание выбранного объекта, нажмите в категории **Каталог объектов [Object Dictionary]** на **Справка [Help]**.

5.2 Инициализация, сохранение, перезапуск

Нажмите на Контроллер->Инициализация, сохранение, перезапуск [Controller->Init Save Reboot]. Появится следующее окно:

🖬 Init Save Reboot 🔀
Save Control Parameters
Save Motor Parameters
Init Control Parameters
Reboot

Рис. 5-4: Инициализация, сохранение, перезапуск

Нажмите на соответствующий пункт, чтобы завершить требуемую операцию.

Информация

После заполнения параметров Init Control нужно нажать экранные кнопки "Сохранить параметры регулирования" [Save Control Parameters] и "Перезапуск" [Reboot], чтобы загрузить стандартные параметры регулирования на контроллер.

5.3 Обновление встроенного ПО

Новый контроллер мотора всегда поставляется с последней версией встроенного ПО. Если необходимо обновить встроенное ПО, загрузите новое встроенное ПО через пункт меню Контроллер->Загрузить встроенное ПО [Controller->Load Firmware].

🖬 Load Firmware				×
NULL				
Current FW CRC:	92DD6D74	Software Version	FD201701230913-Fs	
Load File	NULL			
Download				_

Рис. 5-5: Загрузка встроенного ПО

Нажмите на Загрузить файл [Load File], чтобы выбрать файл встроенного ПО (.servo), затем на Download, чтобы загрузить встроенное ПО на контроллер.

Информация

Не выключайте устройство во время загрузки встроенного ПО и не отсоединяйте кабель RS232. В случае прерывания процесса загрузки сначала включите контроллер. После этого выберите файл встроенного ПО и нажмите экранную кнопку загрузки (Download). В заключение, запустите связь RS232.

5.4 Чтение/запись конфигурации контроллера

Эта функция может использоваться для одновременного считывания/записи нескольких параметров для одинаковых систем, чтобы устранить необходимость настраивать параметры контроллера один за другим.

5.4.1 Считывание настроек из контроллера

Нажмите на Инструменты->Конфигурация R/W контроллера->Считывание настроек из контроллера [Tools->

R/W Controller Configuration->Read Settings from Controller или нажмите экранную кнопку 🗲 👔

Появится следующее окно.

🖶 Iran	sfer Set	ttings	5				×
W	Write Settings to Controller			Read Settings from Controller			
ot	pen List	No pal	th				
Re	ad from	NUM	Index	Driver Value	Result	Name	
	ntroller					<u> </u>	
Sav	ve to File						

Рис. 5-6: Передача настроек

Нажмите на Открыть список [Open List], чтобы выбрать файл списка параметров (.cdo). Параметр появится в окне. Нажмите на Считывание настроек из контроллера [Read Settings from Controller], чтобы получить Показатель привода [Drive Value] и Результат [Result], затем нажмите на Сохранить в файл [Save to File], чтобы сохранить настройки в виде файла.cdi.

Информация

Файл.cdo определяет, какие объекты считываются. Если такого объекта в контроллере не существует, отображается результат "False" (ошибка) (красным цветом).

5.4.2 Запись настроек в контроллер

Нажмите на Инструменты->Конфигурация R/W контроллера->Запись настроек в контроллер [Tools->

R/W Controller Configuration->Write Settings to Controller] или нажмите экранную кнопку

Появится следующее окно:

Информация

Всегда деактивируйте контроллер, прежде чем записывать настройки на СММВ, так как некоторые объекты не удается записать, если контроллер активирован.

📹 Iransfer Set	ttings					×
Write Settings to Controller		Read Setting	s from Controller	\neg		
Open File	No path					
Write to Controller	NUM Index	Source Value	Check Value	Result	Name	
Save in EEPROM			·			
Reboot						

Рис. 5-7: Передача настроек

Нажмите на Открыть файл [Open File], чтобы выбрать файл с настройками параметров (.cdi). Настройки параметров появятся в окне.

Файл.cdi содержит такую информацию, как адрес объекта, значение объекта и результат считывания. Если результатом считывания является "ошибка" ["False"], сразу отобразится "недействительно" ["Invalid"] красным цветом в поле **Результат [Result]**.

Чтобы получить Контрольное значение [Check Value] и Результат [Result], нажмите на Записать в контроллер [Write to Controller]. Результат [Result] "False" означает, что значение не удалось записать, и, возможно, причина в том, что такого объекта в контроллере не существует. Нажмите на Сохранить в EEPROM [Save in EEPROM] и Перезапуск [Reboot], чтобы активировать все параметры.

5.5 Функции дискретных входов/выходов

Нажмите на пункт меню **Контроллер->Функции дискретных I/O [Controller->Digital IO Functions]** или нажмите экранную кнопку **I-O**. Появится следующее окно. Функция и полярность отображаются здесь стандартно.

🗖 Dig	ital IO Functions							×
_Digital I	nput							1
Num	Function		×	Simulate	Real	Polarity	Internal	
DIN1	Enable	>>	×		•		•	
DIN2	Reset Errors	>>	×		•		•	
DIN3	Start Homing	>>	×		•		•	
DIN4	P Limit +	>>	×		•		•	
DIN5	P Limit -	>>	×		•		•	
DIN6		>>	×		•		•	
DIN7	Homing Signal	>>	×		•		•	
_ _ Digital (Dutput							1
Num	Function		×	Simulate	Real	Polarity		
OUT1	Ready	>>	×		•			
OUT2	Motor Brake	>>	×		•			
OUT3	Pos Reached	>>	×		•			
OUT4	Zero Speed	>>	×		•			
OUT5	Error	>>	×		•			

Рис. 5-8: Дискретные I/O

5.5.1 Дискретные входы

Контроллер мотора СММВ снабжен 7 дискретными входами. Функции этих дискретных входов можно сконфигурировать. Функции можно настроить после работы с меню наладки Easy (см. главу 4) через заводские настройки или настройки по умолчанию на стороне применения. Функции дискретных входов также можно свободно сконфигурировать.

Digital Input							1
Num Function		×	Simulate	Real	Polarity	Internal	
DIN1 Enable	>>	×		•		•	

Рис. 5-9: Дискретный вход

Функция [Function]: нажмите на 🤲, чтобы выбрать настройку функции DIN, нажмите на 🎮, чтобы удалить настройку функции DIN.

Реально [Real]: отображает фактическое состояние оборудования дискретного входа.

1 🧧 означает "активно", состояние логики дискретного входа соответствует 1.

0 🔍 означает "неактивно", состояние логики дискретного входа соответствует 0.

Моделировать [Simulate]: моделирует активный сигнал оборудования дискретного входа.

1 🔜 означает: дискретный вход моделируется как "активный", состояние логики 1.

0 📖 означает: не влияет на состояние логики дискретного входа.

Полярность [Polarity]: меняет полярность состояния логики дискретного входа на обратную.

1 🔜 означает: внутри через "активный" сигнал устанавливается на 1.

0 📖 означает: внутри через "неактивный" сигнал устанавливается на 1.

Внутренний [Internal]: объединяет Simulate, Real и Polarity через формулу логики: Internal=(Real OR Simulate) XOR (NOT Polarity)

1 🤜 означает "активно", состояние логики выбранной функции соответствует 1.

0 🔍 означает "неактивно", состояние логики выбранной функции соответствует 0.

•	

Информация

- Для дискретного входа можно выбрать более одной функции дискретного входа. При отсутствии каких-либо противоречий выбранные функции дискретного входа обрабатываются одновременно.
- Некоторые функции дискретного входа изменяют внутренние регулируемые величины контроллера. Ознакомьтесь с информацией в разделе 6.1, в первую очередь, касающейся управляющего слова [Controlword] и режима работы [Operation_Mode], прежде чем изменять конфигурацию связанной с ними функции дискретного входа.

В следующей таблице представлены функции дискретных входов:

Функция DIN	Описание
Enable	Разблокировка регулятора 1: Разблокировать контроллер (Controlword=Din_Controlword(2020.0F), предустановленное значение=0x2F)
	0: Деактивировать контроллер (Controlword = 0x06)
Reset Errors	Устанавливает Controlword, чтобы сбросить ошибки, активный фронт: 0 -> 1
Operation Mode sel	Выбор режима работы 1: Operation_Mode=EL.Din_Mode1 (2020.0E), предустановленное значение = -3 0: Operation_Mode=EL.Din_Mode0 (2020.0D), предустановленное значение = -4
Kvi Off	1: Регулятор скорости с усилением выкл. О: Регулятор скорости с усилением настроен В главе 7 см. дополнительную информацию о Kvi.
P limit+	Ввод концевого выключателя положительных/отрицательных позиций для концевого
P limit-	выключателя как "Размыкатель 0: Предел позиции активен, соответствующее направление заблокировано
Home-Signal	Сигнал датчика начала отсчета, для перемещения к началу отсчета
Invert Direction	Меняет направление вращения в режиме скорости и крутящего момента на обратное
Din Vel Index0	
Din Vel Index1	Din_Speed Index в режиме скорости DIN
Din Vel Index2	
Quick Stop	Устанавливает Controlword на "Запустить быструю остановку". После быстрой остановки требуется установить Controlword перед 0x0F для разблокировки на 0x06 (если функция разблокировки для DIN сконфигурирована, просто переключите вход)
Start Homing	Запускает перемещение к началу отсчета. Целесообразно, только если активирован контроллер. После перемещения к началу отсчета контроллер возвращается к его предыдущему режиму работы.
Activate Command	Активирует команду позиционирования. Управляет битом 4 Controlword, например, Controlword=0x2F->0x3F
Multifunction0	
Multifunction1	Переключатель передаточного числа редуктора (подробнее см. в параграфе 5.5.3)
Multifunction2	
Gain Switch 0	
Gain Switch 1	переключатель усиления питрегулирования (подробнее см. в параграфе 5.5.4)
Motor Error	1: Запускает ошибку контроллера "Motor temperature". Может использоваться для контроля температуры мотора посредством внешнего термовыключателя или датчика с положительным ТКС. Полярность следует настроить согласно типу датчика.
Fast_Capture1	Быстрая регистрация фактической позиции (полробнее см. параграф 5,5,5)
Fast_Capture2	выстрая регистрация фактической позиции (подробнее см. параграф 5.5.5)
Pre Enable	Из соображений безопасности Pre_Enable может служить в качестве сигнала, чтобы указывать, готова ли вся система или нет. 1: Контроллер можно активировать 0: Контроллер нельзя активировать
PosTable Cond0	N
PosTable Cond1	условие для режима работы по таолицам позиции
Start PosTable	Запустить процесс режима работы по таблицам позиций
PosTable Idx0	
PosTable Idx1	Индекс запуска режима работы по таблицам позиций
PosTable Idx2	
Abort PosTable	Прервать процесс режима работы по таблицам позиций

Табл. 5-2: Функции дискретных входов

5.5.2 Дискретные выходы

Контроллер мотора CMMB снабжен 5 дискретными выходами. Функции этих дискретных выходов можно сконфигурировать. Функции можно настроить после работы с меню наладки Easy (см. главу 4) через заводские настройки или настройки по умолчанию на стороне применения. Функции дискретных выходов также можно свободно сконфигурировать.

Digital (Dutput					
Num	Function	×	Simulate	Real	Polarity	
OUT1	Ready	>> ×		•		

Рис. 5-10: Дискретный выход

Функция [Function]: нажмите на >>, чтобы выбрать настройку функции OUT. Нажмите на , чтобы удалить настройку функции OUT.

Моделировать [Simulate]: моделирует функцию дискретного выхода состояния логики 1.

1

означает: функция дискретного выхода моделируется как состояние логики 1

означает: не влияет на состояние логики дискретного выхода

Полярность [Polarity]: меняет полярность состояния логики дискретного выхода на обратную.

означает: физический дискретный выход **Real** через состояние логики 1 функции дискретного выхода устанавливается на ВКЛ.

0 означает: физический дискретный выход **Real** через состояние логики 0 функции дискретного выхода устанавливается на ВКЛ.

Реально [Real]: отображает фактическое состояние дискретного выхода. Объединяет Simulate, Polarity и состояние логики выбранной функции дискретного выхода через формулу логики: Real=(Dout_Function_Status OR Simulate) XOR (NOT Polarity)

1 🧕 означает: дискретный выход ВКЛ.

означает: дискретный выход ВЫКЛ.

Информация

Для дискретного выхода можно выбрать более одной функции дискретного выхода. Полученным в результате состоянием является логика ИЛИ выбранных функций дискретного выхода.

В следующей таблице представлены функции дискретных выходов:

Функция выхода	Описание
Ready	Контроллер готов к разблокировке
Error	Ошибка контроллера
Pos Reached	В режиме позиционирования, разница позиций между Pos_Actual и Pos_Target <target_pos_window(6067.00), dauer="">=Position_Window_time(6068.00)</target_pos_window(6067.00),>
Zero Speed	Speed_1ms(60F9.1A)k=Zero_Speed_Window(2010.18) и длительность >=Zero_Speed_Time(60F9.14)
Motor Brake	Сигнал для активации тормоза мотора. С помощью этого сигнала можно активировать внешнее реле, которое служит для управления тормозом мотора. (См. параграф 3.2.4).
Speed Reached	lSpeed_Error(60F9.1C)kTarget_Speed_Window(60F9.0A)
Enc Index	Позиция энкодера находится в области вокруг позиции индекса. Эта область определяется Index_Window(2030.00).
Speed Limit	Достигнутая фактическая скорость в режиме крутящего момента Max_Speed(607F.00)
Driver Enabled	Контроллер разблокирован
Position Limit	Функция ограничения позиций активна
Home Found	Исходное положение найдено
Enc Warning	Ошибка энкодера
PosTable Active	Действует режим работы по таблицам позиций

Табл. 5-3: Функции дискретных выходов

5.5.3 Переключатель передаточного числа редуктора (только для экспертов)

Информация

Эта функция рекомендуется только для опытных пользователей.

Существует 8 групп параметров для передаточного числа редуктора, которые можно выбрать с помощью дискретных входов. Передаточное число редуктора используется только для режима импульса/направления (см. раздел 6.5).

Табл. 5-4: Переключатель передаточного числа редуктора

Внутренний адрес	Тип	Имя	Значение	Единица измерения
2508.01	Int16	Gear_Factor[0]		Десятичн.
2508.02	Uint16	Gear_Divider[0]		Десятичн.
2509.01	Int16	Gear_Factor[1]		Десятичн.
2509.02	Uint16	Gear_Divider[1]		Десятичн.
2509.03	Int16	Gear_Factor[2]		Десятичн.
2509.04	Uint16	Gear_Divider[2]		Десятичн.
2509.05	Int16	Gear_Factor[3]		Десятичн.
2509.06	Uint16	Gear_Divider[3]		Десятичн.
2509.07	Int16	Gear_Factor[4]		Десятичн.
2509.08	Uint16	Gear_Divider[4]		Десятичн.
2509.09	Int16	Gear_Factor[5]		Десятичн.
2509.0A	Uint16	Gear_Divider[5]		Десятичн.

2509.0B	Int16	Gear_Factor[6]	Десятичн.
2509.0C	Uint16	Gear_Divider[6]	Десятичн.
2509.0D	Int16	Gear_Factor[7]	Десятичн.
2509.0E	Uint16	Gear_Divider[7]	Десятичн.

Фактическим передаточным числом редуктора является Gear_Factor[x], Gear_Divider[x], при этом x соответствует двоично-десятичному коду (BCD) из

Бит 0: Multifunction0

Бит 1: Multifunction1

Бит 2: Multifunction2

Битом, который не сконфигурирован на DIN, является 0.

Пример:

DIN3 Multifunction0	>> 🗙	•	•
DIN4 Multifunction1	>> 🗙	•	•
DIN5 Multifunction2	>> 🗙	•	•

Рис. 5-11: Пример переключателя передаточного числа редуктора DIN

Multifunction0=0, Multifunction1=1, Multifunction2=1, чтобы x=6, фактическим передаточным числом редуктора является Gear_Factor[6], Gear_Divider[6].

5.5.4 Переключатель усиления (только для экспертов)

Информация

Эта функция рекомендуется только для опытных пользователей, которые изучили основы процесса настройки параметров регулирования сервосистемы.

Существует 4 группы настроек усиления ПИ-регулирования, причем каждая группа содержит пропорциональную (Кvp) и интегральную (Kvi) долю регулятора скорости, а также пропорциональную долю (Кpp) регулятора положения. Контроллер мотора СММВ предлагает несколько способов для динамического выбора группы из настроек ПИ-усиления.

	Табл. 5-5: Па	раметры гр	уппы настр	ойки ПИ-	усилени
--	---------------	------------	------------	----------	---------

Внутренний адрес	Тип	Имя	Значение	Единица измерения
60F9.01	Uint16	Kvp[0]		Десятичн., шестнадцатеричн.
60F9.02	Uint16	Kvi[0]		Десятичн.
60FB.01	Int16	Kpp[0]		Десятичн., шестнадцатеричн.
2340.04	Uint16	Kvp[1]		Десятичн., шестнадцатеричн.
2340.05	Uint16	Kvi[1]		Десятичн.
2340.06	Int16	Kpp[1]		Десятичн., шестнадцатеричн.
2340.07	Uint16	Kvp[2]		Десятичн., шестнадцатеричн.
2340.08	Uint16	Kvi[2]		Десятичн.
2340.09	Int16	Kpp[2]		Десятичн., шестнадцатеричн.
2340.0A	Uint16	Kvp[3]		Десятичн., шестнадцатеричн.

2340.0B	Uint16	Kvi[3]	Десятичн.
2340.0C	Int16	Kpp[3]	Десятичн., шестнадцатеричн.
60F9.28	Uint8	PI_Pointer	Десятичн.
60F9.09	Uint8	PI_Switch	Десятичн.

Фактическими настройками ПИ являются Kvp[x], Kvi[x], Kpp[x], x=PI_Pointer.

Существует 3 способа изменения PI_Pointer.

Способ 1: Функция Переключатель усиления 0 [Gain Switch 0] и/или Переключатель усиления 1 [Gain Switch 1]

конфигурируется на DIN. PI_Pointer является двоично-десятичным кодом (BCD) из

Бит 0: Переключатель усиления 0 [Gain Switch 0]

Бит 1: Переключатель усиления 1 [Gain Switch 1]

Если сконфигурирован только один бит, другим битом является 0.

Пример:

DIN3 Gain Switch0	>> 🗙	•	•
DIN4 Gain Switch1	>> 🗙	•	•

Рис. 5-12: Пример DIN-переключателя усиления

Gain Switch0=1, Gain Switch1= 0, тогда Pl_Pointer=1, действительными настройками ПИ-усиления являются Kvp[1], Kvi[1] и Kpp[1]

Способ 2: Если способ 1 не применяется, установите PI_Switch(6069.09) на 1. Затем, пока мотор вращается, установите PI_Pointer ti =0. Если **Поз. достигнута [Pos Reached]** или **Скорость нулевая [Zero Speed]**, установите PI_Pointer на =1

Это функция для системы, которая требует различных настроек ПИ-усиления для вращения и неподвижного состояния.

Информация

См. таблицу функций выходов в разделе 5.5.2 для определения Pos Reached и Zero Speed.

Способ 3: Если не используется ни способ 1, ни способ 2, значение PI_Pointer может определяться пользователем. Настройка по умолчанию, равная 0, настоятельно рекомендуется.

5.5.5 Функция Fast Capture

Функция **Fast Capture** (быстрый захват) применяется для регистрации текущей фактической позиции (6063.00) при появлении соответствующего фронта DIN. Время реакции составляет максимум 2 мс.

Внутренний адрес	Тип	Имя	Значение	Единица измерения
2010.20	Uint8	Rising_Captured1		Десятичн.
2010.21	Uint8	Falling_Captured1		Десятичн.
2010.22	Uint8	Rising_Captured2		Десятичн.
2010.23	Uint8	Falling_Captured2		Десятичн.
2010.24	Int32	Rising_Capture_Position1		Десятичн.
2010.25	Int32	Falling_Capture_Position1		Десятичн.
2010.26	Int32	Rising_Capture_Position2		Десятичн.
2010.27	Int32	Falling_Capture_Position2		Десятичн.

Табл. 5-6: Объекты Fast Capture

Если функция DIN **Fast_Capture1** сконфигурирована на DIN, и возникает нарастающий фронт DIN, то Rising_Captured1 изменяется на 1. Одновременно Pos_Actual сохраняется на Rising_Capture_Position1. Если возникает спадающий фронт DIN, Falling_Captured1 устанавливается на 1. Одновременно Pos_Actual сохраняется на Falling_Capture_Position1. Если Rising_Captured1 или Falling_Captured1 изменяется на 1, пользователь должен выполнить их сброс для следующего процесса регистрации на 0, так как следующие фронты после первого не регистрируются.

Fast_Capture2 функционирует аналогично Fast_Capture1.

5.6 Осциллограф

Функция осциллографа служит для записи выбранных объектов в один из свободно определяемых интервалов времени (**Sample Time**) и в гибко задаваемое общее число образцов (**Samples**). Если во время эксплуатации мощность не соответствует требованиям, или возникают иные неожиданные характеристики работы, рекомендуется использовать функцию осциллографа [Scope] для проведения анализа.

Нажмите на Контроллер-->Осциллограф [Controller-->Scope] или на ۻ, чтобы открыть окно осциллографа

🖬 Scope											
Zoom Depth: Scope Mode:	:0 :Normal										
Sample Time	62.5us		CH Object	Valu	ue Unit	Hide 🔽 Small Scale	Y Offset		s V 2 Im Sal	CH .	
	Samples	500			Ap 💌						
Trig Source	Trig Offset	250	Speed_QEI_Ba		rpm 💌				14 NU X2	dx I	Unit
Null	-		Pos_Actual		inc •						us
Trig Level	•	2	Start Rei	read Export	Import V Single			Y1	Y2		Unit

Рис. 5-13: Окно осциллографа

Смещение триггера [Trig offset]: Количество образцов перед событием пуска триггера.

Объект [Object]: Данные с максимальной длиной 64 бит могут быть взяты в одном образце, например: 2 объекта Int32 или 4 объекта Int16.

Однократно [Single]: 🗹 Single означает считывание только для одного события пуска триггера.

Single означает последовательное считывание.

Увеличение/Уменьшение изображения на осциллограмме: Нажмите правую кн	юпку мыши и потяните ее вправо
вниз/влево наверх. Щелчком левой кнопкой мыши на 💿 активируется режи	м растягивания по горизонтали,

символ меняется на (1), и в области отображения осциллограммы указатель мыши превращается в палец. Масштабируемую осциллограмму можно растянуть в горизонтальном направлении, нажав левую кнопку мыши и потянув влево/вправо.

Щелчок левой кнопкой мыши на 🖾 либо увеличение или уменьшение изображения автоматически прерывает режим растягивания.

Курсор: До 4 курсоров осциллографа можно выбрать нажатием соответствующей экранной кнопки:

Курсоры осциллографа появляются на осциллограмме. Выберите канал в поле списка **Выбрать канал [Sel CH]**. Переместите указатель мыши к курсору осциллографа. Нажмите левую кнопку мыши и потяните за курсор осциллографа, чтобы переместить его. Значение выборки и разности X1, X2 и Y1, Y2 появятся в следующих полях:

X1	X2	dX	Unit
			us
Y1	Y2	dY	Unit

Рис. 5-14: Данные курсоров

Экспорт [Export]: Экспортирует данные выборки как файл.scope.

Импорт [Import]: Импортирует файл.scope и отображает осциллограмму в окне осциллографа.

Повторное чтение [Reread]: Снова считывает последние данные осциллографа из контроллера и отображает осциллограмму в окне осциллографа.

Автоматич. [Auto]: Если галочка стоит в окошке метки у **Автоматич. [Auto]**, осциллограмма масштабируется автоматически.

Если рядом с **Автоматич. [Auto]** нет галочки, осциллограмма масштабируется с помощью шкалы и смещения в следующем поле:

2.1E-01 AV 0.0	
----------------	--

Рис. 5-15: Данные шкалы и смещения

Значение для шкалы и смещения можно увеличить нажатием экранной кнопки 📠 и уменьшить нажатием

экранной кнопки 🔟. Если в окошке метки стоит галочка рядом с Уменьшенная шкала [Small scale], то шаг изменения для значения шкалы изменяется по сравнению с исходным на 10 %.

Режим осциллографа [Scope Mode]: На левой стороне осциллограммы сверху отображается режим осциллографа "Normal" или "Import".

-Normal: все экранные кнопки активны.

🗖 Scope

Zoom Depth:0 Scope Mode:Normal

Рис. 5-16: Режим осциллографа: Normal

-Import: Если осциллограмма представляет собой импорт из файла.scope, режим осциллографа называется "Import". В этом режиме экранные кнопки **Запуск [Start], Повторное чтение [Reread]** неактивны. Выйти из режима "Import" можно нажатием на "Here" в примечании.

🗆 Scope

Zoom Depth:0;Time Grid:3118.75u5 Scope Mode:Import.Switch to Normal mode press Here

Рис. 5-17: Режим осциллографа: Import

5.7 Индикация ошибок и архив ошибок

Ошибка [Error]: Нажмите на Контроллер->Индикация ошибок [Controller->Error Display] или нажмите экранную

кнопку 🔽 (которая становится красной 🚩, если появляется ошибка). Появится окно с индикацией ошибок. Оно отображает последние ошибки.

Бит	Название ошибки	Код ошибки	Описание
0	Extended Error		Сравн. объект "Error_State 2" (2602.00)
1	Encoder not connected	0x7331	Энкодер с интерфейсом связи не подключен
2	Encoder internal	0x7320	Внутренняя ошибка энкодера
3	Encoder CRC	0x7330	Связь с энкодером нарушена
4	Controller- Temperature	0x4210	Температура охлаждающего радиатора слишком высока
5	Overvoltage	0x3210	Повышенное напряжение шины пост. тока

Табл. 5-7: Информация о состоянии ошибки – Error_State(2601.00)

6	Undervoltage	0x3220	Пониженное напряжение шины пост. тока
7	Overcurrent	0x2320	Короткое замыкание выходного каскада или мотора
8	Chop Resistor	0x7110	Перегрузка резистора с тормозным прерывателем
9	Following Error	0x8611	Превышен уровень макс. ошибки рассогласования
10	Low Logic Voltage	0x5112	Слишком низкий уровень электропитания логических схем
11	Motor or Controller IIt	0x2350	Ошибка IIt мотора или выходного каскада
12	Overfrequency	0x8A80	Слишком высокое входное напряжение сигналов импульса/направления
13	Motor Temperature	0x4310	Слишком высокая температура мотора
14	Информация энкодера	0x7331	Энкодер не подсоединен, или нет ответа в коммуникации энкодера
15	EEPROM-Data	0x6310	Ошибка контрольной суммы EEPROM

Табл. 5-8: Информация о состоянии ошибки – Error_State2(2602.00)

Бит	Название ошибки	Код ошибки	Описание
0	Current sonsor	0x5210	Слишком большое смещение или пульсация сигнала датчика тока
1	Watchdog	0x6010	Исключение программного сторожевого таймера
2	Wrong Interrupt	0x6011	Недействительное исключение Interrupt
3	MCU ID	0x7400	Распознан неверный тип МСИ
4	Motor Configuration	0x6320	Нет данных мотора в EEPROM / Мотор никогда не конфигурировался
5	Reserved		
6	Reserved		
7	Reserved		
8	External Enable	0x5443	Функция DIN "pre_enable" сконфигурирована, но DIN неактивно, если контроллер активирован / активируется
9	Positive Limit	0x5442	Положительный предел позиции (после перемещения к началу отсчета) – Предел позиции вызывает ошибку, только если Limit_Function (2010.19) установлено на 0.
10	Negative Limit	0x5441	Отрицательный предел позиции (после перемещения к началу отсчета) – Предел позиции вызывает ошибку, только если Limit_Function (2010.19) установлено на 0.
11	SPI internal	0x6012	Внутренняя ошибка встроенного ПО в SPI-Handling
12	Reserved		
13	Closed loop Direction	0x8A81	Отличающееся направление между энкодером мотора и позиций при эксплуатации в замкнутом контуре регулирования из-за второго энкодера.
14	Reserved		
15	Master-Counting	0x7306	Ошибка счета мастер-энкодера

Информация

Архив ошибок [Error History]: Нажмите на пункт меню Контроллер->Архив [Controller->Error History].

Появится окно со списком архива ошибок. В нем содержатся коды ошибок и параметры напряжения шины пост. тока, скорости, тока, температуры контроллера, режима работы и рабочего времени контроллера для последних 8 ошибок в момент их возникновения.

Существуют параметры ошибок, указывающие, какие ошибки сохраняются в архиве ошибок (см. табл. 5-9). Табл. 5-9 Ошибки и маска архива ошибок

Внутрен- ний адрес	Тип	Имя	Пояснение (расшифровка бита, см. табл. 5-7 и табл. 5-8)	Стан- дартно
2605.01	Uint16	Error_Mask	Macкa Error_State(2601.00). Бит = 0 означает: соответствующая ошибка игнорируется.	0xFFFF
2605.02	Uint16	Store_Mask_ON	Маска ошибки для архива ошибок Error_State(2601.00), если контроллер активирован. Бит = 0 означает: соответствующая ошибка не сохраняется в архиве ошибок	OxFBFF
2605.03	Uint16	Store_Mask_OFF	Маска ошибки для архива ошибок Error_State(2601.00), если контроллер не активирован. Бит = 0 означает: соответствующая ошибка не сохраняется в архиве ошибок	0x0000
2605.04	Uint16	Error_Mask2	Маска Error_State2(2602.00). Бит = 0 означает: соответствующая ошибка игнорируется	0xFFFF
2605.05	Uint16	Store_Mask_ON2	Маска ошибки для архива ошибок Error_State2(2602.00), если контроллер активирован. Бит = 0 означает: соответствующая ошибка не сохраняется в архиве ошибок	0xF1FF
2605.06	Uint16	Store_Mask_OFF2	Маска ошибки для архива ошибок Error_State2(2602.00), если контроллер не активирован. Бит = 0 означает: соответствующая ошибка не сохраняется в архиве ошибок	0x003F

Глава 6 Режимы работы и режимы регулирования

Параметры контроллера можно настраивать с помощью панели управления или разъема RS232 (например, с использованием программы CMMB Configurator). В следующей вводной части указываются адрес панели управления (при наличии) и внутренний адрес в таблицах объектов.

6.1 Шаги общей процедуры запуска режима регулирования

Шаг 1: Создание линий связи

Проследите за тем, чтобы требуемая схема линий связи для применяемой системы была выполнена правильно (см. глава 3).

Шаг 2: Конфигурация функции входов/выходов

См. в разделе 5.5 пояснения функций входов/выходов и полярности.

Табл. 6-1:	Функция	дискретного	входа
------------	---------	-------------	-------

Адрес панели управления	Внутренний адрес	Тип	Имя	Значение (шестнадцатеричн.): описание
d3.01	2010.03	Uint16	Din1_Function	0001: Enable 0002: Reset Errors 0004: Operation Mode sel
d3.02	2010.04	Uint16	Din2_Function	0008: Kvi Off 0010: P Limit+ 0020: P Limit- 0040: Home Signal 0080: Invert Direction
d3.03	2010.05	Uint16	Din3_Function	0100: Din Vel Index0 0200: Din Vel Index1 1000: Quick Stop 2000: Start Homing 4000: Activate Command
d3.04	2010.06	Uint16	Din4_Function	8001: Din Vel Index2 8004: Multifunction0 8008: Multifunction1 8010: Multifunction2
d3.05	2010.07	Uint16	Din5_Function	8020: Gain Switch 0 8040: Gain Switch 1 8100: Motor Error 8200: Pre Enable 8400: Fast_Capture1
d3.06	2010.08	Uint16	Din6_Function	9001: Fast_Capture2 9001: PosTable Cond0 9002: PosTable Cond1 9004: Start PosTable 9008: PosTable Idx0
d3.07	2010.09	Uint16	Din7_Function	9010: PosTable Idx1 9020: PosTable Idx2 9040: Abort PosTable

Табл. 6-2: Функция дискретного выхода

Адрес панели управления	Внутренний адрес	Тип	Имя	Значение (шестнадцатеричн.): описание
d3.11	2010.0F	Uint16	Dout1_Function	0001: Ready 0002: Error
d3.12	2010.10	Uint16	Dout2_Function	0004: Pos Reached 0008: Zero Speed 0010: Motor Brake
d3.13	2010.11	Uint16	Dout3_Function	0020: Speed Reached 0040: Enc Index 0200: Speed Limit
d3.14	2010.12	Uint16	Dout4_Function	0400: Driver Enable 0800: Position Limit 0400: Home Found
d3.15	2010.13	Uint16	Dout5_Function	8002: Enc Warning 9001: PosTable Active

Табл. 6-3: Настройка полярности

Адрес панели управления	Внутренний адрес	Тип	Имя	Описание
d3.53	2010.01	Uint16	Din_Polarity	Бит 0: DIN1 Бит 1: DIN2 Бит 2: DIN3 Бит 6: DIN7
d3.54	2010.0D	Uint16	Dout_Polarity	Бит 0: OUT1 Бит 1: OUT2 Бит 2: OUT3 Бит 5: OUT6

Switch_On_Auto (только для экспертов)

Если функция **Разблокировка [Enable]** не сконфигурирована на DIN, контроллер при включении или перезапуске может автоматически активироваться со следующей настройкой:

Табл. 6-4: Switch_On_Auto

Адрес панели управления	Внутренний адрес	Тип	Имя	Значение
d3.10	2000.00	Uint8	Switch_On_Auto	1

Примечание

Этот способ не рекомендуется. Перед использованием учитывайте все риски и соответствующие меры по предотвращению несчастных случаев.

Шаг 3: Настройка требуемых параметров

Пользователь может перейти к списку основных рабочих параметров; для этого нажмите на **Контроллер->** Базовый режим [Controller->Basic Operation]. Для добавления дополнительных параметров см. вводную информацию в параграфе 5.1.5. На следующих страницах этой главы представлены рабочие параметры. См. главу 7 об адаптации показателей мощности. Табл. 6-5: Общие параметры

Адрес панели управ- ления	Внутрен- ний адрес	Тип	Имя	Описание
	6083.00	Uint32	Profile_Acc	Ускорение профиля, замедление профиля для Operation_Mode 1
	6084.00	Uint32	Profile_Dec	и 3
d2.24	6080.00	Uint16	Max_Speed_RPM	Максимальная скорость (единица измерения: об/мин)
d3.16	2020.0D	Int8	Din_Mode0	Если режим работы сконфигурирован на DIN, то
d3.17	2020.0E	Int8	Din_Mode1	Operation_Mode(6060.00)=Din_Mode0 при Din_Internal=0; Operation_Mode=Din_Mode1 при Din_Internal=1
	6073.00	Uint16	CMD_q_Max	Максимальный выходной ток
	6040.00	Uint16	Controlword	OxOF/Ox2F: Активировать разблокировку контроллера для Operation_Mode 3, -3, -4, 4 и для режима работы по таблицам позиций Ox2F->Ox3F: Выполнить перемещение к абсолютной позиции в Operation_Mode 1 Ox4F->Ox5F: Выполнить перемещение к относительной позиции в Operation_Mode 1 Ox0F->Ox1F: Запустить перемещение к началу отсчета в Operation_Mode 6 Ox06->Ox86: Квитировать ошибку контроллера Ox06: Удалить разблокировку контроллера
	6060.00	Int8	Operation_Mode	 -3: Режим скорости (без контроля ошибки рассогласования) 3: Режим скорости профиля 1: Режим позиционирования -4: Режим импульса/направления 4: Режим крутящего момента

Информация

Сам Operation_Mode невозможно сохранить, хотя согласно настройкам в Command_Type(3041.02) или EAO2 в меню панели управления EASY он устанавливается на специальное значение (см. табл. 4-2 для EAO2). В качестве альтернативы можно сконфигурировать Operation_Mode так, чтобы он мог настраиваться и/или конфигурироваться через функцию DIN Operate_Mode_Sel (см. табл. 5-2).

Шаг 4: Сохранение и перезапуск

См. главу 5.

Шаг 5: Запуск в работу

Начните работу с помощью DIN или программных средств ПК.

Информация

Функция DIN имеет наивысший приоритет – значение объекта теперь нельзя изменить вручную, если оно сконфигурировано в DIN, например, если сконфигурирована функция разблокировки [Enable], управляющее слово Controlword(6040.00) нельзя изменить в ручном режиме через программу ПК.

6.2 Режим скорости (-3, 3)

Существует 2 типа режима скорости: -3 и 3. Команду скорости можно установить с помощью Target_Speed или аналогового входа (аналоговый режим скорости) или через дискретный вход (режим скорости DIN).

Адрес панели управ- ления	Внутрен- ний адрес	Тип	Имя	Описание	Значение
	6060.00	Int8	Operation_Mode	 -3: Команда скорости устанавливается непосредственно через Target_Speed. Только регулятор скорости активен. 3: Команда скорости устанавливается через Target_Speed с ускорением профиля и замедлением профиля. Регуляторы скорости и положения активны. 	-3 или 3
	60FF.00	Int32	Target_Speed	Заданная скорость	Опреде- ляется пользо- вателем
	6040.00	Uint16	Controlword	См. табл. 6-5	0x0F, 0x06

Табл. 6-6: Режим скорости

6.2.1 Аналоговый режим скорости

Переход к окну с аналоговым объектом скорости в программе ПК осуществляется через пункт меню Контроллер->Режимы регулирования->Аналоговый режим скорости [Controller->Control Modes->Analog Speed Mode].

Табл. 6-7: Аналоговый режим скорости

Адрес панели управ- ления	Внутрен- ний адрес	Тип	Имя	Описание	Значение
	2501.06	Uint16	ADC1_Buff[1]	Реальные данные входа AIN1	
d1.13	d1.13 2502.0F Int16		Analog1_out	Действительный вход AIN1; аналоговый входной сигнал 1 (AIN1), входное напряжение после фильтра, зоны нечувствительности и смещения	Только для
	2501.07	1.07 Uint16 ADC2_Buff[1] Реальные данные входа AIN2		Реальные данные входа AIN2	чтения
d1.14	2502.10	Int16	Analog2_out	Действительный вход AIN2; аналоговый входной сигнал 2 (AIN2), входное напряжение после фильтра, зоны нечувствительности и смещения	
d3.22	2502.01	Uint16	Analog1_Filter	Фильтр AIN1 (единица измерения: мс)	
d3.23	2FF0.1D	Int16	Analog1_Dead_V	Зона нечувствительности AIN1 (единица измерения: 0,01 В)	
d3.24	2FF0.1E	Int16	Analog1_Offset_V	Смещение AIN1 (единица измерения: 0,01 В)	Опреде-
d3.25	2502.04	Uint16	Analog2_Filter	Фильтр AIN2 (единица измерения: мс)	ляется
d3.26	2FF0.1F	Int16	Analog2_Dead_V	Зона нечувствительности AIN2 (единица измерения: 0,01 В)	пользо- вателем
d3.27	2FF0.20	Int16	Analog2_Offset_V	Смещение AIN2 (единица измерения: 0,01 В)	
	2502.0A	Int16	Analog_Speed_Factor	Коэффициент скорости AIN	

d3.28	2502.07	Uint8	Analog_Speed_Con	0: аналоговое управление скоростью ВЫКЛ., управление скоростью через Target_Speed(60FF.00) 1: управление скоростью через AIN1 2: управление скоростью через AIN2	0, 1, 2
	2502.0D	Int16	Analog_Dead_High	Стандартно 0, если НЕ 0, то Analog_out>Analog_Dead_High обрабатывается как 0	Опреде- ляется
	2502.0E	Int16	Analog_Dead_Low	Стандартно 0, если НЕ 0, то Analog_out‹Analog_Dead_Low обрабатывается как 0	пользо- вателем
d3.33	2FF0.22	Int16	Voltage_MaxT_Factor	Коэффициент AIN-MaxTorque (единица измерения: мН·м/В)	Опреде- ляется пользо- вателем
d3.32	2502.09	Uint8	Analog_MaxT_Con	0: Управление Analog_MaxTorque ВЫКЛ. 1: Управление макс. моментом через AIN1 2: Управление макс. моментом через AIN2	0, 1, 2

С целью упрощения в формуле используется несколько новых обозначений. Определения:

AIN1_in: входное напряжение AIN1 после фильтра и смещения

AIN2_in: входное напряжение AIN2 после фильтра и смещения

Analog_out: Analog1_out или Analog2_out, в зависимости от схемы линий и настройки Analog_Speed_Con; это результат фактического входа AIN, фильтра, смещения и зоны нечувствительности.

Конечный результат:

Регулирование Analog_Speed ВКЛ.:

Если Analog_out не ограничивается Analog_Dead_High или Analog_Dead_Low:

Заданная скорость [об/мин]=Analog_out[B]*Analog_Speed_Factor[об/мин/В; в противном случае заданная скорость [об/мин]=0.

Управление Analog_MaxTorque ВКЛ.:

Максимальный крутящий момент[H·м]=Analog_out[B]*Analog_MaxT_Factor[H·м/B]

Пример:

Настройка: Analog1_Dead=1 B, Analog1_Offset=2 B, Analog_Speed_Factor=100 об/мин/B, Analog_Speed_Con=1, Analog_Dead_High=0 B; Analog_Dead_Low=0 B;

Если входное напряжение AIN1 составляет 5 В:

AIN1_in=5 B-2 B=3 B, IAIN1_inl >Analog1_Dead, при этом Analog1_out=3 B-1 B=2 B;

Заданная скорость=2*100=200 об/мин.

Если входное напряжение AIN1 составляет -5 В:

AIN1_in=-5 B-2 B=-7 B, IAIN1_inl >Analog1_Dead, при этом Analog1_out=-7 B-+1 B=-6 B;

Заданная скорость=-6*100=-600 об/мин.

6.2.2 Режим скорости DIN

Переход к окну с объектом Din_Speed в программе ПК осуществляется через пункт меню Контроллер->Режимы регулирования->Режим скорости DIN [Controller->Control Modes->DIN Speed Mode].

Чтобы режим скорости DIN стал доступен, необходимо настроить (сконфигурировать), как минимум, одну из следующих величин на DIN: **Din Vel Index0, Din Vel Index1, Din Vel Index2**.

Адрес панели управ- ления	Внутрен- ний адрес	Тип	Имя	Описание	Значение
d3.18	2020.05	Int32	Din_Speed[0]		
d3.19	2020.06	Int32	Din_Speed[1]	Команда скорости указывается	
d3.20	2020.07	Int32	Din_Speed[2]	х является двоично-десятичным кодом	00000
d3.21	2020.08	Int32	Din_Speed[3]	(BCD) из Бит 0: Din Vel Index0	ляется
d3.44	2020.14	Int32	Din_Speed[4]	Бит 1: Din Vel Index1	пользо-
d3.45	2020.15	Int32	Din_Speed[5]	Бит 2: Din Vel Index2	вателем
d3.46	2020.16	Int32	Din_Speed[6]	является 0.	
d3.47	2020.17	Int32	Din_Speed[7]		

Табл. 6-8: Режим скорости DIN

Пример:

Конфигурация I/O

1							
	Num	Function	×	Simul	ate Real	Polarity	Internal
	DIN1	Enable	>> 🗙				•
	DIN2	Reset Errors	>> 🗙				•
	DIN3	Operate Mode Sel	>> 🗙				•
	DIN4	Din Vel Index0	>> 🗙				•
	DIN5	Din Vel Index1	>> 🗙				•
	DIN6	Din Vel Index2	>> ×		•		•

Рис. 6-1: Пример для скорости DIN

Табл. 6-9: Пример для скорости DIN

Адрес панели управления	Внутренний адрес	Тип	Имя	Значение	Единица измерения
d3.17	2020.0E	Int8	Din_Mode1	-3	
d3.20	2020.07	Int32	Din_Speed[2]	500	об/мин

Din Vel Index0=0; **Din Vel Index1**=1; **Din Vel Index2**=0. Если DIN1 активно, контроллер перемещает мотор в режиме скорости (Operation_Mode=-3) при 500 об/мин, если не возникают неожиданные ошибки или пределы.

6.3 Режим крутящего момента (4)

В режиме крутящего момента контроллер мотора СММВ позволяет вращать мотор с установленным значением крутящего момента.

Адрес панели управ- ления	Внутрен- ний адрес	Тип	Имя	Описание	Значение
	6060.00	Int8	Operation_Mode		4
	6071.00	Int16	Target_Torque%	Целевой момент, процентное значение от номинального момента	Определяется пользователем
	6040.00	Uint16	Controlword	См. табл. 6-5	0x0F, 0x06

Табл. 6-10: Режим крутящего момента

6.3.1 Аналоговый режим крутящего момента

В аналоговом режиме крутящего момента контроллер мотора СММВ управляет крутящим моментом мотора и/или максимальным моментом посредством напряжения на аналоговом входе.

Переход к окну с аналоговым объектом крутящего момента в программе ПК осуществляется через пункт меню Контроллер->Режимы регулирования->Аналоговый режим крутящего момента [Controller->Control Modes->Analog Torque Mode].

Табл. 6-11: Аналоговый режим крутящего момента

Адрес панели управ- ления	Внутрен- ний адрес	Тип	Имя	Описание	Значение		
	2501.06	Uint16	ADC1_Buff[1]	ADC1_Buff[1] Фактическое входное напряжение AIN1			
d1.13	2502.0F	Int16	Analog1_out	Действительный вход AIN1, аналоговый входной сигнал 1 (AIN1), входное напряжение после фильтра, зоны нечувствительности и смещения	Только для		
	2501.07	Uint16	ADC2_Buff[1]	Реальные данные входа AIN2	чтения		
d1.14 2502.10 Int16		Analog2_out	Действительный вход AIN2, аналоговый входной сигнал 2 (AIN2), входное напряжение после фильтра, зоны нечувствительности и смещения				
d3.22	2502.01	Uint16	Analog1_Filter	Фильтр AIN1 (единица измерения: мс)			
d3.23	2FF0.1D	Int16	Analog1_Dead_V	Зона нечувствительности AIN1 (единица измерения: 0,01 В)			
d3.24	2FF0.1E	Int16	Analog1_Offset_V	Смещение AIN1 (единица измерения: 0,01 В)	Опреде-		
d3.25	2502.04	Uint16	Analog2_Filter	Фильтр AIN2 (единица измерения: мс)	ляется		
d3.26	2FF0.1F	Int16	Analog2_Dead_V	Зона нечувствительности AIN2 (единица измерения: 0,01 В)	пользо- вателем		
d3.27	2FF0.20	Int16	Analog2_Offset_V	Смещение AIN2 (единица измерения: 0,01 В)			
d3.31	2FF0.21	Int16	Voltage_Torque_ Factor	Коэффициент крутящего момента AIN (единица измерения: мН·м/В)			
d3.30	2502.08	Uint8	Analog_Torque_ Con	0: Аналоговое управление крутящим моментом ВЫКЛ., целевой момент указывается через Target_Torque% (6071.00) 1: Управление крутящим моментом через AIN1 2: Управление крутящим моментом через AIN2	0, 1, 2		

d3.33	2FF0.22	Int16	Voltage_MaxT_ Factor	Коэффициент AIN-MaxTorque (единица измерения: мН·м/В)	Опреде- ляется пользова- телем
d3.32	2502.09	Uint8	Analog_MaxT_Con	0: Управление Analog_MaxTorque ВЫКЛ. 1: Управление макс. моментом через AIN1; 2: Управление макс. моментом через AIN2;	0, 1, 2

С целью упрощения в формуле используется несколько новых обозначений. Соответствующие определения: AIN1_in: входное напряжение AIN1 после фильтра и смещения.

AIN2_in: входное напряжение AIN2 после фильтра и смещения.

Analog_out: Analog1_out или Analog2_out, в зависимости от схемы линий и настройки Analog_Torque_Con. Это результат фактического входа AIN, фильтра, смещения и зоны нечувствительности.

Конечный результат:

Если управление Analog_Torque ВКЛ., то целевой момент [H·м]=Analog_out[B]*Analog_Torque_Factor[H·м/B]. Если управление Analog_MaxTorque ВКЛ., то макс. момент [H·м]=Analog_out[B]*Analog_MaxT_Factor[H·м/B].

Пример:

См. параграф 6.2.1, "Аналоговый режим скорости".

6.4 Режим позиционирования (1)

В режиме позиционирования контроллер мотора СММВ позволяет перемещать мотор в одну из абсолютных или относительных позиций. Команда позиции/скорости устанавливается через

Target_Position/Profile_Speed или таблицу позиций (режим работы по таблицам позиций)

Адрес панели управ- ления	Внутрен- ний адрес	Тип	Имя	Описание	Значение
	6060.00	Int8	Operation_Mode		1
	607A.00	Int32	Target_Position	Абсолютная/относительная целевая позиция	Опреде- ляется пользова- телем
	6081.00	Int32	Profile_Speed	Скорость профиля для позиционирования	Опреде- ляется пользо- вателем
	6040.00	Uint16	Controlword	См. табл. 6-5	0x2F->0x3F, 0x4F->0x5F, 0x0F, 0x06

Табл. 6-12: Режим позиционирования

6.4.1 Режим работы по таблицам позиций

Режим работы по таблицам позиций используется для отработки прохода позиционирования с количеством заданий до 32 в режиме позиционирования. Каждое задание содержит информацию о целевой позиции, скорости, ускорении, замедлении, ближайшей остановке/начале задания, ближайшем индексе задания, условии, чтобы перейти к следующему индексу, общих циклах и др.

Функция **Start PosTable** должна быть сконфигурирована на DIN, чтобы получить доступ к режиму работы по таблицам позиций. Другие функции таблиц позиций являются опциональными.

Табл. 6-13: Функции DIN режима работы по таблицам позиций

Имя	Описание
PosTable Cond0	Если Cond0 ON, Condition0 = PosTable Cond0 (см. вводную информацию о Cond0 ON)
PosTable Cond1	Если Cond1 ON, Condition1 = PosTable Cond1 (см. вводную информацию о Cond1 ON)
Start PosTable	Запустить проход позиционирования
PosTable Idx0	
PosTable Idx1	Индекс записи прохода позиционирования, bit0: PosTable Idx0; bit1: PosTable Idx1; bit2: PosTable Idx2. Битом, который не сконфигурирован на DIN, является 0.
PosTable Idx2	
Abort PosTable	Прервать проход позиционирования

Табл. 6-14: Функции OUT режима работы по таблицам позиций

Имя	Описание
PosTable Aktiv	Действует режим работы по таблицам позиций

Нажмите в программе ПК пункт меню Контроллер->Режимы регулирования->Режим работы по таблицам позиций [Controller->Control Modes->Position Table Mode], чтобы вызвать настройки параметров таблиц позиций.

	Posit	ion Tabl	le Node										
						CTL Reg	of index:0						
BitO	-4:Next	Index Bit5	Bit6 Bit	7 Bit8:Nex	kt/Stop B	it9:Cond 0	Bit10:	Cond 1 Bit 11	L:And/Or	Bit12-	-13:1	MODE Bit1	4-15:StartCond.
		0	0 0	0	0		0	0		0		0	(
Idx	MODE	StartCond.	Pos inc	Speed rpm	Delay ms	Acc idx	Dec idx	CTL Reg	Loops	Rest		Acc rps/s	Dec rps/s
0	A	Ignore	0	0	0	0	0	0	0	0	0		0 0
1	A	Ignore	0	0	0	0	0	0	0	0	1		0 0
2	А	Ignore	0	0	0	0	0	0	0	0	2		0 0
3	А	Ignore	0	0	0	0	0	0	0	0	3		0 0
4	А	Ignore	0	0	0	0	0	0	0	0	4		0 0
5	А	Ignore	0	0	0	0	0	0	0	0	5		0 0
6	A	Ignore	0	0	0	0	0	0	0	0	6		0 0
- 7	A	Ignore	0	0	0	0	0	0	0	0	7		0 0
8	A	Ignore	0	0	0	0	0	0	0	0			
9	A	Ignore	0	0	0	0	0	0	0	0			
10	A	Ignore	0	0	0	0	0	0	0	0	∥ Cu	rrent Index	0
11	A	Ignore	0	0	0	0	0	0	0	0			· · ·
12	A	Ignore	0	0	0	0	0	0	0	0		Read Table	
13	A	Ignore	0	0	0	0	0	0	0	0			
14	A	Ignore	0	0	0	0	0	0	0	0		Weite Table	1
15	A	Ignore	0	0	0	0	0	0	0	0		write rable	
16	A	Ignore	0	0	0	0	0	0	0	0			-1
17	A	Ignore	0	0	0	0	0	0	0	0		Import Table	:
18	A	Ignore	0	0	0	0	0	0	0	0			_
19	A	Ignore	0	0	0	0	0	0	0	0		Export Table	.
20	A	Ignore	0	0	0	0	0	0	0	0			
21	A	Ignore	0	0	0	0	0	0	0	0		Clear Table	
22	A	Ignore	0	0	0	0	0	0	0	0			
23	A	Ignore	0	0	0	0	0	0	0	0			
24	A	Ignore	0	0	0	0	0	0	0	0	1		
25	A	Ignore	0	0	0	0	0	0	0	0			
26	A	Ignore	0	0	0	0	0	0	0	0			
27	A	Ignore	0	0	0	0	0	0	0	0			
28	A	Ignore	0	0	0	0	0	0	0	0			
29	A	Ignore	0	0	0	0	0	0	0	0			
30	A	Ignore	0	0	0	0	0	0	0	0			
31	A	Ignore	0	0	0	0	0	0	0	0			

Рис. 6-2: Окно режима работы по таблицам позиций

Сигнал DIN **Start PosTable** (нарастающий фронт) запускает задание индекса записи (указано через функцию DIN). Но то, будет ли выполняться задание, зависит от условия запуска (**CTL reg**, бит 14-15). После завершения задания происходит переход к следующему индексу (**CTL reg**, бит 0-4) или остановка, в зависимости от Next/Stop (**CTL reg**, бит 8), условия (**CTL reg**, бит 9-11) и циклов **Loops**. В текущем окне индекса отображается индекс задания, которое в данный момент выполняется.

Можно настроить до 32 наборов позиций, при этом каждое задание содержит следующие пункты: **Индекс [Idx]:** Номер набора позиции [0-31].

Целевая позиция [Posinc]: Целевая позиция в инкрементах.

Скорость об/мин [Speed rpm]: Скорость во время позиционирования.

Задержка мс [Delay ms]: Время задержки перед продолжением движения к следующему индексу (единица измерения: мс).

Индекс ускор., Индекс замедл. [Accidx, Dec idx]: Диапазон: 0-7, индекс ускорения профиля, замедление во время позиционирования, соответствующее значение настраивается в следующих полях диапазона:

	Acc rps/s	Dec rps/s
0	0	0
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0
6	0	0
7	0	0

Рис. 6-3: Таблица ускорения и замедления

CTL Reg: Содержит следующие биты:

Биты 0-4: Следующий индекс, определяет индекс ближайшего задания на регулирование позиций Биты 5-7: Резерв

Бит 8: Далее/Остановка,

1: Далее; к следующему заданию, если условие (см. бит 9-11) = 1, и проверка цикла в порядке (ОК) (см. **Loops**), после завершения текущего задания на позиционирование.

0: Остановка; остановка после завершения текущего задания на позиционирование.

Бит 9: Cond0 ON,

1: Cond0 ON; condition0 соответствует логическому состоянию функции DIN PosTable Cond0.

0: Cond0 OFF.

Бит 10: Cond1 ON,

1: Cond1 ON; condition1 = нарастающий фронт функции DIN **PosTable Cond1**.

0: Cond1 OFF.

Бит 11: И/или; только если оба Cond0 и Cond1 = ON,

1: И; условие = (Condition0&&Condition1).

0: ИЛИ; условие = (Condition0llCondition1).

Условие = 1, если ни Cond0, ни Cond1 = ON.

Условие = Condition0, если только Cond0 = ON.

Условие = Condition1, если только Cond1 = ON.

Биты 12-13: МОДЕ, режим команды позиционирования,

0 (A): **Posinc** – это абсолютная позиция.

1 (RN): **Posinc** – это позиция относительно последней целевой позиции.

2 (RA): **Posinc** – это позиция относительно текущей фактической позиции.

Биты 14-15: **StartCond,** условие запуска. Если это задание запускается сигналом **Start PosTable**, контроллер обычно выполняет его безотлагательно. Но если выполняется еще одно задание на позиционирование:

- 0 (ignore): игнорировать.
- 1 (ожидание): выполнить это задание после завершения текущего задания (без задержки).
- 2 (прерывание): прервать текущее задание и безотлагательно выполнить эту команду.

С целью упрощения можно поставить все биты **CTL_Reg** в следующие поля:

CTL Reg of index:2									
Bit0-4:Next Index	Bit5	Bit6	Bit7	Bit8:Next/Stop	Bit9:Cond 0	Bit10:Cond 1	Bit11:And/Or	Bit12-13:MODE	Bit14-15:StartCond.
0	0	0	0	0	0	0	0	0	0

Рис. 6-4: Обработка CTL Reg

Циклы [Loops]: Определяет предел цикла для задания, которое выполняется в циклах;

0: нет предела,

≥ 1: макс. количество отработок задания в текущем проходе позиционирования. Если задание уже выполнено столько раз, сколько существует **Циклов [Loops]**, проход позиционирования остановится при следующей попытке снова принять это задание.

Оставш. [Rest]: Отображает оставшееся количество возможных отработок задания в выполняемом процессе позиционирования, если Циклы [Loops] ≥ 1;

0: нет дальнейшей отработки этого задания, если цикл [Loops] ≥ 1,

≥ 1: оставшееся количество возможных отработок задания в выполняемом процессе позиционирования.

Информацию о задании на регулирование позиций можно скопировать в другую строку. Нажмите справа на выбранную строку, и появится следующее окно выбора:

Idx	MODE	StartCond.	Pos inc		
0	A	Wait	400		
1	A	Cone Row	1		
2	A	Cope Now			
3	A	faste Now			

Рис. 6-5: Копирование таблицы позиций

Нажмите на Копировать строку [Copy Row] и затем на Вставить строку [Paste Row] в другой выбранной строке.

Если таблица позиций заполнена, нажмите экранную кнопку Write Table, чтобы записать ее в контроллер.

Запустите таблицу через DIN с помощью функции **Start PosTable**. Задание индекса записи будет запущено, и начнется процесс отработки позиций (по правилу **StartCond**).

Сигнал DIN **AbortPosTable** (нарастающий фронт) или удаление конфигурации функции **Start PosTable** в DIN прерывает текущий процесс позиционирования после того, как выполняемое задание завершилось. Процесс позиционирования сразу прерывается, если произошла ошибка, или режим работы [Operation_Mode] изменился.

6.5 Режим импульса/направления (-4)

В режиме импульса/направления команда заданной скорости с передаточным числом редуктора указывается через тактовый вход.

Адрес панели управ- ления	Внутрен- ний адрес	Тип	Имя	Описание	Значение
	6060.00	Int8	Operation_Mode		-4
d3.34	2508.01	Int16	Gear_Factor[0]		Опреде-
d3.35	2508.02	Uint16	Gear_Divider[0]	Gear_ratio=Gear_Factor/Gear_Divider	ляется пользо- вателем
	6040.00	Uint16	Controlword	См. табл. 6-5	0x0F, 0x06
d3.36	2508.03	Uint8	PD_CW	Режим импульса/направления 0: CW / CCW (по часовой стрелке/против часовой стрелки) 1: Импульс/Направление 2: А / В (инкрементный энкодер)	0, 1, 2
d3.37	2508.06	Uint16	PD_Filter	Фильтр импульса/направления (мс)	00000
d3.38	2508.08	Uint16	Frequency_Check	Предел частоты (инкр./мс), если счетчик импульсов (в 1 мс) превышает Frequency_Check, возникает ошибка повышенной частоты.	ляется пользо- вателем

Табл. 6-15: Импульсный режим

Табл. 6-16: Схема направлений PD_CW

Импульсный режим	Вперед	Назад
P / D		
cw / ccw		
А/В		

Информация

"Вперед" означает, что задано положительное направление отсчета позиций для направления против часовой стрелки (ССW). Вы можете установить Invert_Dir(607E.00) на 1, чтобы изменить направление вращения вала мотора на обратное.

График PD_filter:

Рис. 6-6: График фильтра импульса/направления

6.5.1 Режим мастер-станции/слейв-станции:

Режим мастера/слейва – это разновидность режима импульса/направления – PD_CW = 2. Тактовый вход для слейв-контроллера направлен от внешнего инкрементного датчика или выхода энкодера мастер-контроллера. Разрешение выходного сигнала энкодера (ENCO) мастер-контроллера указывается через Encoder_Out_Res.

Адрес панели управ- ления	Внутрен- ний адрес	Тип	Имя	Описание	Значение
	2340.0F	Int32	Encoder_Out_Res	Указать количество выходных импульсов энкодера для 1 оборота энкодера мотора	Опреде- ляется пользо- вателем

Табл. 6-17: Режим мастера/слейва

Для настройки параметров слейв-контроллера см. вводное описание к режиму импульса/направления, приведенное немного выше.

Схема линий мастера и слейва выглядит следующим образом:

Рис. 6-7: Схема линий мастер-/слейв-станции (Пример: от одного контроллера СММВ к другому)

6.6 Режим определения начала отсчета (6)

Если применений много, система должна запускаться каждый раз после включения из одной и той же позиции. В режиме определения начала отсчета пользователь может установить основную позицию и нулевую точку (начальную точку).

Нажмите на пункт меню Контроллер->Режимы регулирования->Определение перемещения к началу отсчета [Controller->Control Modes->Homing definition], и появится следующее окно:

Homing Trigger					
	Configration				
Use the Index Signal	Origin Search Dirction	Limit Switch	Home Switch		
C Use Limit Switch	Positive Dir.	Use Limit Switch	Use Home Switch		
C Use Home Switch	C Negative Dir.	Positive Limit Negative Limit			
C By Special Method					
C Disabled	Actual Home Method 0	Pre-Set Home Meth	nod 34	Write Down	
۸		Home Offset	0	DEC	
v		Home back spe	ed 300.00	rpm	
		Home speed	100.00	rpm	
		Home ACC	50.00	rps/s	
	<u>33</u>	Home Current	5.68	Ар	
Index Signal		Home offset M	ig When Power o ethod	'n	
		0:Run to Home	-Offset	•	
		Home Blind	0:0 Rev	•	

Рис.: 6-8: Настройки перемещения к началу отсчета

Выберите триггер для перемещения к началу отсчета под **Триггер перемещения к началу отсчета [Homing Trigger]**. Нужный элемент появится в области **Конфигурация [Configuration]**. Выберите подходящий элемент в соответствии с механической конструкцией и схемой линий. Соответствующий метод перемещения к началу отсчета появится в поле **Предварительно заданный метод перемещения к началу отсчета [Pre-Set Home Method]**. Если под триггером перемещения к началу отсчета [Homing Trigger] выбрано **Деактивировано [Disabled]**, вы можете ввести число непосредственно в поле **Предварительно заданный метод перемещения к началу отсчета [Pre-Set Home Method]**. Нажмите на **Write Down**, чтобы настроить его для контроллера. В середине появится специальное изображение предустановленного метода перемещения к началу отсчета.

Все объекты метода перемещения к началу отсчета приведены в следующей таблице:

Адрес панели управле- ния	Внутрен- ний адрес	Тип	Имя	Описание	Значение
	607C.00	Int32	Home_Offset	Нулевая точка координатного привода	Опреде-
	6098.00	Int8	Homing_Method	См. рис. 6-8	ляется

6099.01	Uint32	Homing_Speed_Switch	Скорость для поиска концевого выключателя/датчика начала отсчета	пользова- телем
6099.02	Uint32	Homing_Speed_Zero	Скорость для нахождения основной позиции и нулевой позиции	
6099.03	Uint8	Homing_Power_On	1: Начать перемещение к началу отсчета после включения или после перезапуска и первой разблокировки контроллера	0,1
609A.00	Uint32	Homing_Accelaration	Замедление и ускорение во время перемещения к началу отсчета	Опреде- ляется
6099.04	Int16	Homing_Current	Макс. ток во время перемещения к началу отсчета	пользова- телем
6099.05	Uint8	Home_Offset_Mode	0: Перемещение к нулевой точке координатного привода. Фактической позицией будет 0. 1: Перемещение к точке начала отсчета. Фактической позицией будет отрица- тельная нулевая точка координатного привода.	0, 1
6099.06	Uint8	Home_N_Blind	Глухое окно основной позиции 0: 0 об 1: 0,25 об 2: 0,5 об	0, 1, 2
6060.00	Int8	Operation_Mode		6
6040.00	Uint16	Controlword	См. табл. 6-5	0x0F->0x1F, 0x06

Примечание

Homing_Power_On=1 позволяет запустить мотор, если контроллер активирован после включения или перезапуска. Перед использованием примите все меры безопасности.

Home_N_Blind:

Если homing_method требует сигнала Home (концевой выключатель/датчик начала отсчета) и сигнала Index, функция Home_N_Blind может предотвратить получение разных результатов перемещения к началу отсчета при одинаковой механической системе, когда сигнал Index очень близок к сигналу Home. Благодаря установке на 1 перед перемещением к началу отсчета контроллер распознает специальное глухое окно для автоматического перемещения к началу отсчета. Это можно использовать, чтобы обеспечить всегда одинаковые результаты перемещения к началу отсчета.

Во время перемещения к началу отсчета сигнал Index внутри этого глухого окна игнорируется, как только найден сигнал Home. Home_N_Blind (0:0 об;1:0,25 об;2:0,5 об) предварительно устанавливается на 0. Если установить его на 1, то после перемещения к началу отсчета он окажется на 0 или 2, в зависимости от позиции сигнала Index относительно сигнала перемещения к началу отсчета. Этот параметр следует сохранить в памяти. В случае проведенного изменения механического узла или замены мотора просто снова установите его на 1 для первого перемещения к началу отсчета.

Метод переме- щения к началу отсчета	Описание	Схема с пиктограммами
1	Перемещение к началу отсчета с концевым выключателем в отрицательной позиции и индексным импульсом	Сигнал Index Отрицательный предел
2	Перемещение к началу отсчета с концевым выключателем в положительной позиции и индексным импульсом	Сигнал Index Положительный предел
3	Перемещение к началу отсчета с датчиком начала отсчета и индексным импульсом	Сигнал Index Сигнал Home
4	Перемещение к началу отсчета с датчиком начала отсчета и индексным импульсом	Сигнал Index Сигнал Home

9	Перемещение к началу отсчета с концевым выключателем в положительной позиции, датчиком начала отсчета и индексным импульсом	Сигнал Index Сигнал Home Положительный предел
10	Перемещение к началу отсчета с концевым выключателем в положительной позиции, датчиком начала отсчета и индексным импульсом	Сигнал Index Сигнал Home Положительный предел
11	Перемещение к началу отсчета с концевым выключателем в отрицательной позиции, датчиком начала отсчета и индексным импульсом	Сигнал Index Сигнал Home Отрицательный предел
12	Перемещение к началу отсчета с концевым выключателем в отрицательной позиции, датчиком начала отсчета и индексным импульсом	Сигнал Index Сигнал Home Отрицательный предел

13	Перемещение к началу отсчета с концевым выключателем в отрицательной позиции, датчиком начала отсчета и индексным импульсом	Сигнал Index Сигнал Home Отрицательный предел
14	Перемещение к началу отсчета с концевым выключателем в отрицательной позиции, датчиком начала отсчета и индексным импульсом	Сигнал Index Сигнал Home Отрицательный предел
17	Перемещение к началу отсчета с концевым выключателем в отрицательной позиции	Отрицательный
18	Перемещение к началу отсчета с концевым выключателем в положительной позиции	Положительный
19	Перемещение к началу отсчета с датчиком начала отсчета	Сигнал Home

20	Перемещение к началу отсчета с датчиком начала отсчета	Сигнал Ноте
21	Перемещение к началу отсчета с датчиком начала отсчета	Сигнал Home
22	Перемещение к началу отсчета с датчиком начала отсчета	Сигнал Home
23	Перемещение к началу отсчета с концевым выключателем в положительной позиции и датчиком начала отсчета	Сигнал Ноте Положительный предел
24	Перемещение к началу отсчета с концевым выключателем в положительной позиции и датчиком начала отсчета	Сигнал Ноте Положительный предел

30	Перемещение к началу отсчета с концевым выключателем в отрицательной позиции и датчиком начала отсчета	Сигнал Ноте Отрицательный предел
33, 34	Перемещение к началу отсчета с индексным импульсом	Сигнал Index
35	Перемещение к началу отсчета по фактической позиции	
-17, -18	Перемещение к началу отсчета до упора	(17) (18) Отрицательный упор упор

Глава 7 Процесс настройки каскадов регулирования сервосистемы

Рис. 7-1: Принципиальная блок-схема управления сервосистемы

На рис. 7.1 представлена принципиальная блок-схема каскадов регулирования сервосистемы. На иллюстрации наглядно показано, что сервосистема обычно включает в себя три цикла (контура) регулирования: регулятор тока, регулятор скорости и регулятор положения.

Процесс настройки сервосистемы используется для такой настройки параметров регуляторов и фильтров, чтобы они соответствовали механическим характеристикам и предотвращали вибрацию всей системы, позволяя быстро выполнять команды и не допускать шума, выходящего за пределы норм.

7.1 Автонастройка

Функция автоматической настройки пытается за несколько перемещений вызвать реакцию мотора и системы нагрузок и получить момент инерции масс из нагрузки. Если автонастройка проведена успешно, жесткость автоматически настраивается согласно соотношению моментов инерции масс.

Рис. 7-2: Автонастройка

Осторожно: автонастройка приводит к тому, что мотор примерно 1 секунду вибрирует, при этом максимальный диапазон осцилляции составляет приблизительно 0,5 оборота; обеспечьте, чтобы ваша машинная система выдерживала такую вибрацию.

7.1.1 Параметры для автонастройки

Табл. 7-1: Параметры	флнкнии	автонастройки
iuoni, i inapamerph	функции	abionacipointin

Адрес панели управ- ления	Внут- ренний адрес	Имя	Описание	Стан- дартно	Диапа- зон	R: чтение W: запись S: сохранение в памяти
tn01	3040.08	Stiffness	Диапазон: 0-31. См. табл. 4-5.	12	0-31	RWS
tn02	3040.0B	Inertia_Ratio	Inertia_Ratio=(J_Load+J_Motor)*10/ J_Motor	30	10-500	RWS
tn03	3040.01	Tuning_ Method	Запись значения 1 запускает процесс настройки и измерение момента инерции масс. Если после настройки появляется "1", настройка выполнена успешно.			RW
tn04	3040.06	Safe_Dist	Единица измерения: 0,01 об Этот параметр соответствует теоретическому диапазону переме- щения во время автонастройки. Настройка этого параметра на более высокое значение снижает влияние помех и повышает надежность результатов, что, однако, приводит к более сильной вибрации.	22	0-40	RWS

7.1.2 Запуск автонастройки

Со светодиодной панели управления (см. раздел 4.3):

Откройте меню tunE на светодиодной панели управления и перейдите к tn03.

Запишите 1 на tn03. Мотор колеблется с меньшей амплитудой, вибрация длится менее 1 с.

Если tn03 по окончании автонастройки остается на 1, автонастройка проведена успешно. В противном случае она окончилась неудачей (см. 7.1.3).

С помощью программы ПК:

Нажмите в CMMB Configurator на пункт меню Контроллер->Режим работы->Автонастройка [Controller->Operation Modes->Auto-tuning]

🖽 A	utoTunin	9			
NUM	Index	Туре	Name	Value	Unit
0	304001	int8	Tuning_Method	0	DEC
1	304006	uint16	Safe_Dist	22	DEC
2	304007	int32	EASY KLOAD	992	DEC
3	304009	int8	Inertia_Get_Result	0	DEC
4	304008	uint8	Stiffness	12	DEC
5	30400B	int16	Inertia_Ratio	30	DEC
6	304105	uint8	WriteFUN_CTL	0	DEC

Рис. 7-3: Автонастройка

Запишите 1 в TUN CTL (3041.05) и затем 1 в метод настройки [Tuning Method] (3040.01). Мотор вибрирует менее 1 с, и появляются результаты. Если Inertia_Get_Result(3040.09) = 1, то процесс настройки достиг действительного

Inertia_Ratio(3040.0В). В противном случае процесс настройки окончился неудачей, см. полезные советы в п. 7.1.3. Снова запишите 1 в Tuning_Method(3041.01), чтобы проверить, воспроизводится ли результат для Inertia_Ratio. Если нет, осторожно повышайте Safe_Dist(3040.06), чтобы достичь более точных результатов. Если машина вибрирует слишком сильно, уменьшите Safe_Dist, чтобы снизить вибрацию.

7.1.3 Проблемы при автонастройке

Если процесс настройки прошел неудачно, указанием причины служит событие ошибки tn03 / Inertia_Get_Result(3040.09)

- 0: По какой-либо причине не удалось активировать контроллер.
- -1: Невозможно измерить момент инерции масс из-за слишком слабого движения или низкого тока.
- -2: Измеренное значение момента инерции масс выходит за пределы допустимого диапазона.
- -3: Полученное значение Inertia_Ratio (соотношение моментов инерции) превышает 250 (соотношение моментов инерции масс > 25). Такой результат возможен в том случае, если контур регулирования все же не был настроен.
- -4: Полученное значение Inertia_Ratio (соотношение моментов инерции) превышает 500 (соотношение моментов инерции масс > 50). Это неясный результат.

В случае 0, -1, -2, -4 параметр Inertia_Ratio (соотношение моментов инерции) устанавливается на 30, а в случае -3 – на измеренное значение; жесткость устанавливается на 7-10

В случае ошибки параметры контура регулирования устанавливаются следующим образом: Inertia_Ratio (соотношение моментов инерции) 30, настроенная жесткость. Чтобы измеренное Inertia_Ratio начало применяться для -3, нужно подтвердить значение tnO2 при помощи кнопки SET, или требуется однократно записать Inertia_Ratio(3040.0B).

•	

Информация

Причины неудачи при автонастройке:

- Неправильная схема линий сервосистемы СММВ
- Функция DIN Pre_Enable сконфигурирована, но не активна
- На настраиваемый координатный привод воздействует слишком высокое трение или внешняя сила
- Слишком большой зазор в механической схеме пути между мотором и нагрузкой
- Соотношение моментов инерции масс слишком велико
- Механическая система пути перемещения содержит слишком мягкие элементы (гибкие ленты или соединительные муфты)

Если нет ни одной из этих причин, можно повысить Safe_Dist, чтобы устранить проблемы. Если автонастройка по-прежнему проводится безуспешно, рекомендуется настройка в ручном режиме (см. раздел 7.2).

7.1.4 Адаптация после автонастройки.

После автонастройки жесткость устанавливается на показатель в диапазоне между 4 и 12. Чем больше соотношение моментов инерции масс, тем меньше будет жесткость.

Жесткость	Крр/[0,01 Гц]	Кvp/[0,1 Гц]	Выходной фильтр [Гц]	Жесткость	Крр/[0,01 Гц]	Кvp/[0,1 Гц]	Выходной фильтр [Гц]
0	70	25	18	16	1945	700	464
1	98	35	24	17	2223	800	568
2	139	50	35	18	2500	900	568
3	195	70	49	19	2778	1000	733
4	264	95	66	20	3334	1200	733
5	334	120	83	21	3889	1400	1032
6	389	140	100	22	4723	1700	1032
7	473	170	118	23	5556	2000	1765

Табл. 7-2: Настройки жесткости и контура регулирования

8	556	200	146	24	6389	2300	1765
9	639	230	164	25	7500	2700	1765
10	750	270	189	26	8612	3100	1765
11	889	320	222	27	9445	3400	∞
12	1056	380	268	28	10278	3700	∞
13	1250	450	340	29	11112	4000	∞
14	1500	540	360	30	12500	4500	∞
15	1667	600	392	31	13889	5000	∞

Жесткость требуется настроить согласно фактическим требованиям.

При слишком медленной реакции → Увеличить жесткость. Если уровень вибрации или шума повышается → Уменьшить жесткость.

Если команда от контроллера (например ПЛК) для машины является недостоверной или неприемлемой, следует изменить некоторые фильтры, чтобы уменьшить вибрацию (ручной режим настройки см. в разделе 7.2).

Информация

Если настройка жесткости или соотношение инерции масс Кvp повышается до величины более 4000, то нецелесообразно дальше повышать жесткость, что уменьшит ширину полосы пропускания, если соотношение моментов инерции масс будет дополнительно повышено. При изменении жесткости через средства коммуникации требуется сначала установить WriteFUN_CTL(3041.05) на 1, а после изменения жесткости снова вернуть на 0.

7.2 Ручная настройка

Если функция автонастройки не подходит для конкретного применения, или для применения характерны разные моменты инерции либо очень гибкое соединение, то ручная настройка – надежный выбор.

В ручном процессе настройки используются пробные перемещения. Адаптируйте контроллер на базе опыта работы с конкретной системой и существующего объема данных по конкретной системе, изменяя параметры регуляторов и настройки фильтров.

Поскольку параметры регулятора тока рассчитываются внутри, исходя из параметров мотора, их, как правило, не требуется настраивать вручную.

7.2.1 Настройка регулятора скорости

Шаги, требуемые для адаптации:

Обеспечьте ограничение ширины полосы пропускания регулятора скорости, поскольку она ограничивает ширину полосы пропускания регулятора положения

Ограничение ширины полосы пропускания регулятора скорости можно оценивать под разным углом.

1) Исходя из вибрации и шума, ощущаемых пальцами и органами слуха. Этот способ базируется на опыте сенсорного восприятия и, тем не менее, эффективен. Пользователь может прикасаться или прислушиваться к машине и одновременно повышать либо понижать Кvp. Когда найдено приемлемое максимальное значение для Kvp, можно установить текущую настройку как максимальную ширину полосы пропускания регулятора скорости.

2) В соответствии с изображением на осциллографе: пользователь может создать команду перехода для управления скоростью и испытывать пробные варианты фактической скорости и тока во время изменения Кvp. Правильно выбранный режим скорости должен обеспечить быстрое выполнение команды без вибрации и нетипичных шумов.

Табл. 7-3: Список параметров регулятора скорости

Адрес панели управ- ления	Внут- ренний адрес	Имя	Описание	Стан- дартно	Диапазон
	60F901	Kvp[0]	Пропорциональная составляющая (усиление) регулятора скорости В программе ПК может отображаться в Гц, если соотношение моментов инерции масс является правильным.	/	1-32767
d2.01	2FF00A	Velocity_BW	Ширина полосы пропускания регулятора скорости Изменение этого параметра изменяет Kvp[0] через соотношение моментов инерции масс.	/	1-700
	60F902	Kvi[0]	Интегральная составляющая (постоянная времени) регулятора скорости	/	0-1023
	60F907	Kvi/32	Интегральная составляющая (постоянная времени) регулятора скорости в меньших единицах измерения	/	0-32767
d2.02	2FF019	Kvi_Mix	Запись этого параметра устанавливает Kvi[0] на 0, и значение передается на Kvi/32.	/	0-16384
d2.05	60F905	Speed_Fb_N	Для настройки ширины полосы пропускания фильтра для обратной связи скорости Ширина полосы пропускания фильтра =100+Speed_Fb_N*20	25	0-45
d2.06	60F906	Speed_Mode	Для настройки режима обратной связи скорости 0: 2-й порядок полосы пропускания фильтра (FB) для фильтра нижних частот (LPF) 1: Непосредственная обратная связь по исходной скорости 2: Обратная связь скорости по самописцу скорости 4: Обратная связь скорости по фильтру нижних частот 1-го порядка 10: Обратная связь скорости по фильтру нижних частот 2-го порядка, причем команда скорости фильтруется фильтром нижних частот 1-го порядка. Оба фильтра имеют одинаковую ширину полосы пропускания. 11: Команда скорости фильтруется фильтром нижних частот 1-го порядка 12: Обратная связь скорости по самописцу скорости, причем команда скорости фильтруется фильтром нижних частот 1-го порядка 14: Обратная связь скорости по фильтру нижних частот 1-го порядка, причем команда скорости фильтруется фильтром нижних частот 1-го порядка. Оба фильтра имеют одинаковую ширину полосы пропускания.	1	/
	60F915	Output_Filter_N	Фильтр нижних частот 1-го порядка на пути движения вперед регулятора скорости	1	1-127
	60F908	Kvi_Sum_Limit	Интегральный выходной предел регулятора скорости	/	0-2^15

Настройка фильтра обратной связи по скорости

Фильтр для обратной связи по скорости может снизить уровень шумов (помех) от пути обратной связи, например, шумов разрешения энкодера. Фильтр для обратной связи по скорости можно сконфигурировать

с помощью Speed_Mode для разных применений как устройство 1-го и 2-го порядка. Фильтр 1-го порядка снижает уровень шума немного слабее, но также вызывает уменьшение сдвига фаз, благодаря чему можно настроить усиление регулятора скорости выше. Фильтр 2-го порядка снижает уровень шума сильнее, но также вызывает увеличение сдвига фаз, благодаря чему можно ограничить усиление регулятора скорости. Если конструкция машины – жесткая и легкая, то, как правило, можно использовать 1-й фильтр обратной связи или деактивировать фильтр обратной связи. Если конструкция машины – гибкая и тяжелая, мы можем применить фильтр 2-го порядка.

Если шум мотора при адаптации усиления регулятора скорости слишком сильный, можно соответственно уменьшить параметры для фильтра обратной связи по скорости Speed_Fb_N. При этом ширина полосы пропускания для фильтра обратной связи по скорости F должна быть вдвое больше ширины полосы пропускания регулятора скорости. В противном случае возможна вибрация. Ширина полосы пропускания фильтра для обратной связи по скорости F=Speed_Fb_N*20+100 [Гц].

Настройка выходного фильтра

Выходной фильтр – это фильтр крутящего момента 1-го порядка. Он может уменьшить действие регулятора скорости для выдачи крутящего момента высокой частоты, позволяя создать резонанс всей системы.

Пользователь может попытаться адаптировать Output_Filter_N от малых величин до больших, чтобы понизить уровень шума.

Ширину полосы пропускания фильтра можно рассчитать по следующей формуле.

$$\frac{1}{2} \frac{\ln\left(1 - \frac{1}{Output_Filter_N}\right)}{Ts \pi}, Ts = 62.5 us$$

Расчет ширины полосы пропускания контура скорости

Пользуйтесь следующей формулой для расчета ширины полосы пропускания:

lan -	$1.85335808010^5J\pi^2Fbw$
κvp-	I _{Max} kt encoder
kt	постоянная крутящего момента мотора, единица измер.: Н·м/Асреднеквадр.*100
J	момент инерции масс, единица измер.: кг*м^2*10^6
Fbw	ширина полосы пропускания контура регулирования скорости, единица измер.: Гц
Imax	макс. ток мотора I_max(6510.03) как десятичн. значение
encod	er разрешение энкодера

Настройка коэффициента усиления (интегральная составляющая)

Коэффициент усиления используется, чтобы устранить статическую ошибку. Он может повысить усиление низких частот регулятора скорости, причем более высокий коэффициент усиления может ослабить реакцию на низкочастотные помехи.

Как правило, если машина имеет значительные показатели трения, коэффициент усиления (Kvi) следует установить на более высокое значение.

Если вся система должна быстро реагировать, нужно установить коэффициент усиления на низкое значение или даже на 0 и использовать Gain_Switch 0 или 1 (по DIN).

Hастройка Kvi_sum_limit

Как правило, предустановленные значения подобраны оптимально. Этот параметр необходимо повысить, если применяемая система предъявляет высокие требования к силе, или снизить, если имеется некоторое количество насыщенного выходного тока, и насыщенный выходной ток вызывает вибрацию с низкой частотой.

7.2.2 Настройка регулятора положения

Адрес панели управ- ления	Внут- ренний адрес	Имя	Описание	Стан- дартно	Диа- пазон
d2.07	60FB.01	Крр[0]	Пропорциональная составляющая (усиление) регулятора положения Единица измерения: 0,01 Гц	10	0-32767
d2.08	2FF0.1A	K_Velocity_FF‰	Дополнительное усиление скорости О означает отсутствие дополнительного усиления, 1000 означает 100-процентное дополнительное усиление.	1000	0-4000
d2.09	2FF0.1B	K_Acc_FF‰	Дополнительное усиление ускорения Единица измерения является правильной только в том случае, если правильно настроено соотношение моментов инерции масс. Если соотношение моментов инерции масс неизвестно, настройте вместо этого K_Acc_FF(60FB.03).	/	0-4000
d2.26	60FB.05	Pos_Filter_N	Постоянная времени заданного значения позиции фильтра нижних частот Единица измерения: мс	1	1-255
d2.25	2FF0.0E	Max_Following_ Error_16	Максимально допустимая ошибка paccoгласования, Max_Following_Error (6065.00) = 100 * Max_Following_Error_16	5242	/

Табл. 7-4: Список параметров регулятора положения

Настройка усиления (пропорциональная составляющая)

Повышение коэффициента усиления может улучшить характеристику ширины полосы пропускания и тем самым сократить время позиционирования и уменьшить ошибку рассогласования. Но слишком высокое значение приводит к появлению шумов и даже вибрации. Его следует настроить согласно условиям нагрузки. Крр = 103 * Pc_Loop_BW, Pc_Loop_BW является шириной полосы пропускания. Эта ширина не может быть выше, чем ширина полосы пропускания регулятора скорости. Рекомендуемая ширина полосы пропускания регулятора скорости: Pc_Loop_BW.Vc_Loop_BW / 4, Vc_Loop_BW.

Настройка дополнительного усиления скорости регулятора положения

Увеличение дополнительного усиления скорости регулятора положения может уменьшить ошибку рассогласования, но вызвать повышенное перерегулирование. Если характеристика позиции не сглажена, снижение степени дополнительного усиления скорости может уменьшить вибрацию мотора.

Дополнительное усиление скорости позволяет вышестоящему устройству управления напрямую управлять скоростью в режиме позиционирования. За счет этой функции ограничивается способность регулятора скорости реагировать, что при неподходящей настройке усиления регулятора положения и регулятора скорости приводит к перерегулированию.

Кроме того, скорость, дополнительно усиливающая контур регулирования скорости, может быть несглаженной, и при появлении шумового сигнала большое значение дополнительного усиления скорости также будет усиливать шум.

Дополнительное усиление ускорения регулятора положения

Рекомендуется, чтобы пользователь адаптировал этот параметр. Если требуется очень большое усиление регулятора положения, то дополнительное усиление ускорения K_Acc_FF можно адаптировать соответственно, чтобы увеличить мощность.

За счет дополнительного усиления ускорения вышестоящее устройство управления в режиме позиционирования может непосредственно влиять на крутящий момент. Но тем самым ограничивается

способность регулятора тока реагировать, что при неподходящей настройке регулятора положения и скорости приводит к перерегулированию. Кроме того, ускорение, дополнительно усиливающее регулятор тока, может быть несглаженным, и при появлении шумового сигнала большое значение дополнительного усиления ускорения также будет усиливать шум.

Дополнительное усиление ускорения можно рассчитать по следующей формуле:

ACC_%=6746518/ K_Acc_FF/ EASY_KLOAD*100

АСС_%: процентное отношение, используемое для дополнительного усиления ускорения.

К_Асс_FF(60FB.03): последний внутренний коэффициент для расчета дополнительного усиления.

EASY_KLOAD(3040.07): коэффициент нагрузки, который рассчитывается в результате автонастройки или точного ввода соотношения моментов инерции масс.

Информация

Чем меньше K_Acc_FF, тем больше дополнительное усиление ускорения.

Сглаживающий фильтр

Сглаживающий фильтр – это фильтр скользящего среднего. Он фильтрует заданное значение скорости от генератора скорости и сглаживает заданные значения скоростей и позиций. Это приводит к замедлению заданного значения скорости в контроллере.

Сглаживающий фильтр может ослаблять влияние машинного оборудования, так как сглаживает заданные значения. Параметр Pos_Filter_N определяет постоянную времени этого фильтра в мс. Обычно рекомендуется большая величина Pos_Filter_N, если машинная система вибрирует при запуске и остановке.

Узкополосный режекторный фильтр

Узкополосный режекторный фильтр может подавлять резонансы, сокращая усиление на величину резонансной частоты.

Антирезонансная частота=Notch_N*10+100

Показателем Notch_On, установленным на 1, включается узкополосный режекторный фильтр. Если резонансная частота неизвестна, пользователь может настроить максимальную величину заданного значения тока d2.14 небольшой, чтобы амплитуда колебаний системы находилась в приемлемом диапазоне. После этого попытайтесь адаптировать Notch_N и наблюдайте, чтобы проверить, изчезнет ли резонанс.

Может проводиться грубое измерение резонансной частоты по кривой IQ, если возникает резонанс на программном осциллографе.

Адрес панели управ- ления	Внутрен- ний адрес	Название	Описание	Стан- дартные значе- ния	Диа- пазон
d2.03	60F9.03	Notch_N	Для настройки частоты внутреннего узкополосного режекторного фильтра, чтобы устранить механический резонанс, возникающий, когда мотор приводит в действие машину. Применяется формула F=Notch_N*10+100. Если механическая резонансная частота F=500 Гц, настройка параметра должна составлять, например, 40.	45	0-90
d2.04	60F9.04	Notch_On	Для включения или выключения узкополосного режекторного фильтра. 0: Включить узкополосный режекторный фильтр 1: Выключить узкополосный режекторный фильтр	0	0-1

Табл. 7-5: Список узкополосного режекторного фильтра

7.3 Факторы, влияющие на результаты настройки

Конструкция машины:

В конкретных условиях применения мощность, как правило, ограничивается машинным оборудованием. Зазор между шестернями, гибкие соединения лент, трение в шпинделе, резонанс в системе – все это, в конечном итоге, может повлиять на регулируемую мощность. Регулируемая мощность воздействует на мощность, точность, реакционную способность и стабильность машины. Хотя окончательная мощность машины определяется не только регулируемой мощностью.

Глава 8 Аварийная сигнализация и локализация неисправностей

Когда контроллер выдает аварийный сигнал, на панели управления мигают номера кодов аварийной сигнализации.

Если вам нужна подробная информация об ошибках и архиве ошибок, подсоедините контроллер через RS232 к ПК и см. указания раздела 5.7.

Табл. 8-1: Коды аварийной сигнализации Error_State1

Аварийный сигнал	Название	Причина	Локализация неисправности
FFF.F	Неверная модель мотора	Текущий тип мотора отличается от типа мотора, сохраненного в контроллере.	Способ 1: С помощью кода КЕҮ перейдите на EA01 и подтвердите тип мотора, затем перейдите на EA00, настройте 2. Способ 2: Перейдите в программе ПК на EASY_MT_TYPE (0x304101), подтвердите значение и затем сохраните параметр.
000.1	Расширенная ошибка	Ошибка в Error_State2	Нажмите кнопку SET, чтобы вызвать Error_State2 (d1.16), прочтите бит ошибки, проверьте расшифровку ошибки в табл. 8-2.
000.2	Энкодер не подсоединен	Схема линий энкодера неверна или разъединена.	Используйте мультиметр, чтобы проверить соединение сигнального кабеля энкодера
000.4	Энкодер внутри	Внутренняя ошибка энкодера, энкодер поврежден.	1. Вызовите адрес панели управления d3.51 Encoder_OP кнопкой и установите на 1. 2. Попытайтесь выполнить сброс ошибки контроллера. Если ошибка остается, замените мотор.
000.8	Encoder CRC	Ошибка энкодера CRC	Обеспечьте, чтобы установка была хорошо заземлена
001.0	Температура контроллера	Температура сетевого модуля контроллера достигла значения аварийной сигнализации.	Улучшите среду охлаждения контроллера.
002.0	Повышенное напряжение	Напряжение питания выходит за верхний предел допустимого диапазона входного напряжения При аварийной остановке отсутствует внешний тормозной резистор или торможение.	Проверьте, не является ли напряжение питания нестабильным, и подсоединен ли специальный тормозной резистор.
004.0	Пониженное напряжение	Вход сетевого напряжения ниже значения аварийной сигнализации защиты от низкого напряжения.	Проверьте, не является ли напряжение питания нестабильным.
008.0	Перегрузка по току	Мгновенный ток превышает значение защиты от перегрузки по току.	Проверьте кабели мотора на отсутствие короткого замыкания. Замените контроллер.
010.0	Сопротивление прерывателя	Тормозной резистор перегружен, или его параметры настроены неправильно.	Настройте сопротивление и мощность внешнего тормозного резистора с помощью d5.04 и d5.05.
020.0	Ошибка рассогласования	 Текущая ошибка рассогласования превышает значение настройки Max_Following_Error. 1. Слишком малая жесткость или контур регулирования. 2. Контроллер и мотор вместе не могут выполнить требования варианта применения. 3. Max_Following_Error (d2.25) слишком мала. 4. Настройки дополнительного усиления недостоверны. 5. Неправильная укладка электропроводки мотора. 	Проверьте и устраните причины соответственно.
040.0	Низкое напряжение логических схем	Слишком низкое напряжение питания логических схем.	Проверьте, не является ли напряжение питания логических схем нестабильным.
080.0	llt мотора или контроллера	Тормоз не отпускается, когда вращается вал мотора	Измерьте, правильно ли напряжение клемм тормоза, и отпущен ли тормоз, когда

		Оснащение машины неподвижно, или слишком сильное трение. Стойкость к длительным нагрузкам с точки зрения перегрузки мотора превышает номинальную мощность мотора	контроллер активирован. Устраните механическую проблему прилипания, добавьте смазочный материал. Понизьте ускорение или момент инерции нагрузки.
100.0	Повышенная частота	Внешняя частота входных импульсов слишком высока.	Понизьте частоту импульсов. Повысьте значение Frequency_Check (d3.38).
200.0	Температура мотора	Температура мотора превышает указанное значение.	Понизьте температуру окружающей среды мотора и улучшите условия охлаждения либо уменьшите ускорение и замедление или нагрузку.
400.0	Информация энкодера	 Ошибка связи, когда энкодер иницализирован. Неверный тип энкодера, например, подсоединен неизвестный энкодер. Сохраненные в энкодере данные неверны. Контроллер не может поддерживать текущий тип энкодера. 	Проверьте и устраните причины соответственно.
800.0	Данные EEPROM	Данные повреждены, если произошло включение, и считываются данные из EEPROM.	Данные повреждены, если данные при включении считываются из EEPROM.

Табл. 8-2: Коды аварийной сигнализации Error_State2 (расширено)

Аварийный сигнал	Название	Причина	Устранение неполадок
000.1	Датчик тока	Слишком большое смещение или пульсация сигнала датчика тока	Контур датчика тока поврежден, обратитесь к поставщику.
000.2	Сторожевой таймер	Исключение программного сторожевого таймера	Обратитесь к поставщику и попытайтесь обновить встроенное ПО.
000.4	Неверный Interrupt	Недействительное исключение прерывания (Interrupt)	Обратитесь к поставщику и попытайтесь обновить встроенное ПО.
000.8	MCU ID	Распознан неверный тип MCU	Обратитесь к поставщику.
001.0	Конфигурация мотора	Тип мотора не распознается автомати- чески, нет данных мотора в EEPROM / Мотор никогда не конфигурировался	Установите правильный тип мотора для контроллера и выполните перезапуск.
010.0	Внешняя разблокировка	Функция DIN "pre_enable" сконфигури- рована, но вход неактивен, если контроллер активирован или должен активироваться	Устраните в соответствии с причиной.
020.0	Положительный предел	Положительный предел позиции (после перемещения к началу отсчета), предел позиции вызывает ошибку, только если Limit_Function (2010.19) установлено на 0.	Устраните условие, вызывающее сигнал предела
040.0	Отрицательный предел	Отрицательный предел позиции (после перемещения к началу отсчета), предел позиции вызывает ошибку, только если Limit_Function (2010.19) установлено на 0.	Устраните условие, вызывающее сигнал предела
080.0	SPI внутри	Внутренняя ошибка встроенного ПО в SPI- Handling	Обратитесь к поставщику.
200.0	Направление замкнутого контура регулирования	Отличающееся направление между энкодером и мотором	Измените направление подсчета энкодера
800.0	Процесс подсчета мастер-станции	Ошибка счета мастер-энкодера	Убедитесь в том, что соединение заземления и экран энкодера функционируют согласно правилам.

Глава 9 Список параметров контроллера мотора серии СММВ

9.1 F001

Меню панели управления содержит все значения контроллера, которые могут отображаться световым индикатором в режиме мониторинга без индикации ошибок или предупреждений (см. 4.2). Выберите на светодиодной панели управления адрес панели управления для отображаемого значения и нажмите SET. После выхода из меню на экране появится выбранное значение. Чтобы результат выбор оставался на длительное время, его нужно сохранить с помощью d2.00 в F002.

Адрес панели управ- ления	Внутрен- ний адрес	Имя	Описание	Стан- дартно	Диапазон	R/W/ S
F001	2FF00408	Key_Address_F001	Внутреннее значение для значения панели управления 0 d1.00 2 d1.02 4 d1.04 Расшифровку d1.xx см. в следующей таблице 9-1-2	25	/	RWS

Табл. 9-1-1: Панель управления F001

Табл. 9-1-2: Наладка панели управления F001

Адрес панели управ- ления	Внутрен- ний адрес	Имя	Описание	Стан- дартно	Диапазон	RWS
d1.00	2FF00F20	Soft_Version_LED	Версия встроенного ПО, индикация на светодиоде.	/	/	R
d1.02	2FF01008	Motor_IIt_Rate	Отображает значение фактического iit и макс. iit мотора.	0	0-100 %	R
d1.04	2FF01108	Driver_IIt_Rate	Отображает значение фактичес- кого iit и макс. iit контроллера.	0	0-100 %	R
d1.06	2FF01208	Chop_Power_Rate	Отображает значение фактической мощности и номинальной мощности прерывателя.	0	0-100 %	R
d1.08	60F70B10	Temp_Device	Температура контроллера, единица измерения: ℃	/	/	R
d1.09	60F71210	Real_DCBUS	Напряжение промежуточного контура, единица измерения: В	/	/	R
d1.11	20100010	Din_Real	Состояние физического входа Бит 0: Din 1 Бит 1: Din 2 Бит 2: Din 3 	/	/	R
d1.12	20101410	Dout_Real	Бит 0: Dout 1 Бит 1: Dout 2 Бит 2: Dout 3 	/	/	R
d1.13	2FF01610	AN_V1	Напряжение аналогового сигнала 1, единица измерения 0,01 В	/	/	R
d1.14	2FF01710	AN_V2	Напряжение аналогового сигнала 2, единица измерения 0,01 В	/	/	R
d1.15	26010010	Error_State	См. раздел 5.7, табл. 5-7	0	0-65535	R
d1.16	26020010	Error_State2	См. раздел 5.7, табл. 5-8	0	0-65535	R
d1.17	60410010	Слово состояния	Слово состояния контроллера	/	/	R

d1.18	60610008	Operation_Mode_Buff	Режим работы в буфере	0	/	R
d1.19	60630020	Pos_Actual	Фактическая позиция мотора	0	-2^31- 2^31-1	R
d1.20	60FB0820	Pos_Error	Ошибка рассогласования позиции	0	-2^31- 2^31-1	R
d1.21	25080420	Gear_Master	Величина входного импульса перед электронным редуктором	0	-2^31- 2^31-1	R
d1.22	25080520	Gear_Slave	Величина импульса выполнения после электронного редуктора	0	-2^31- 2^31-1	R
d1.25	2FF01410	Real_Speed_RPM	Фактическая скорость, единица измерения: об/мин	0	0-5000	R
d1.26	60F91910	Real_Speed_RPM2	Фактическая скорость, единица измерения: 0,01 об/мин	0	-10-10	R
d1.28	60F60C10	CMD_q_Buff	q текущего буфера команд	0	-2048- 2047	R
d1.29	2FF01800	I_q_Arms	Фактический ток в координатном приводе q, единица измерения 0,1 А среднеквадр.	0	/	R
d1.48	26800010	Warning_Word	Слово состояния предупреждения энкодера: Бит 0: Предупреждение батареи Бит 1: Смешанное предупреждение Бит 2: Полная загруженность энкодера	0	0-7	R
d1.49	30440008	Cur_IndexofTable	Диапазон: 0-31, текущий индекс в таблице позиций	0	0-31	R

9.2 F002

L

В этом меню панели управления содержатся параметры для каскадов регуляторов. Контроллер->Меню панели управления->Каскады регуляторов(F002) [Controller->Panel Menu->Control Loop Setting(F002)]

Адрес панели управления	Внутренний адрес	Имя	Описание	Стандартно	Диапазон	RWS
d2.00	2FF00108	Store_Data	Сохранить или инициали- зировать параметры 1: Сохранить параметры регулирования 10: Инициализировать параметры регулирования	0	0-255	RW
d2.01	2FF00A10	Velocity_BW	Ширина полосы пропускания регулятора скорости Единица измерения: Гц.	/	1-700	RWS
d2.02	2FF01910	Kvi_Mix	Постоянная времени регулятора скорости как комбинация 32*Kvi(60F9.02) + Kvi/32(60F9.07). Если записано, устанавливает Kvi(60F9.02)=0, и значение переходит к Kvi/32(60F9.07).	/	0-65535	RWS
d2.03	60F90308	Notch_N	Частота узкополосного режекторного фильтра BW=Notch_N*10+100[Гц]	45	0-127	RWS
d2.04	60F90408	Notch_On	Разблокировка узкополосного режекторного фильтра	0	0-1	RWS
d2.05	60F90508	Speed_Fb_N	Ширина полосы пропускания фильтра для обратной связи скорости BW=Speed_Fb_N*20+100[Гц]	25	0-45	RWS
d2.06	60F90608	Speed_Mode	Стандартно: 0, означает использование фильтра нижних частот 2-го порядка 0: 2-й порядок полосы пропускания фильтра (FB) для фильтра нижних частот (LPF) 1: Нет FB для LPF 2: Самописец FB 4: 1-й порядок FB LPF 10: 2-й LPF+SPD_CMD FT 11: SPD_CMD FT 12: SPD_CMD FT 12: SPD_CMD FT+самописец 14: 1-й LPF+самописец	1	0-255	RWS
d2.07	60FB0110	Крр	Кр регулятора положения. Единица измерения: 0,01 Гц	1000	0-32767	RWS
d2.08	2FF01A10	K_Velocity_FF‰	Дополнительное усиление скорости регулятора положения, единица измерения: 0,1 %	0	0-1500	RWS
d2.09	2FF01B10	K_Acc_FF‰	Дополнительное усиление уско- рения регулятора положения, единица измерения: 0,1 %	0	0-1500	RWS
d2.12	60F60110	Кср	Усиление регулятора тока	/	1-32767	RWS
d2.13	60F60210	Ксі	Постоянная времени регулятора тока	/	0-1000	RWS

Табл. 9-2: Панель управления F002

d2.14	2FF01C10	CMD_q_Max_Arms	Максимальный ток в коорди- натном приводе q, единица измерения 0,1 А среднеквадр.	/	0-32767	RWS
d2.15	60F60310	Speed_Limit_Factor	Коэффициент для ограничения максимальной скорости в режиме крутящего момента	10	0-1000	RWS
d2.16	607E0008	Invert_Dir	Изменить перемещение на обратное О: Против часовой стрелки (ССW) как положительное направление 1: По часовой стрелке (СW) как положительное направление	0	0 – 1	RWS
d2.24	60800010	Max_Speed_RPM	Максимальная скорость мотора, единица измерения: об/мин	5000	0 – 15000	RWS
d2.25	2FF00E10	Max_Following_Error_16	Max_Following_Error= 100*Max_Following_Error_16	5242	1 – 32767	RWS
d2.26	60FB0510	Pos_Filter_N	Параметры фильтра типа "скользящего среднего"	1	1 – 255	RWS
d2.27	20101810	Zero_Speed_Window	Функция Dout Zero_Speed активна, если фактическая скорость меньше или равна этому значению Единица измерения: инкр./мс	0	0 – 65535	RWS

9.3 F003

В этом меню панели управления содержатся параметры для конфигурирования функций аналоговых и дискретных входов/выходов.

Контроллер->Меню панели управления->F003 DI/DO и настройка режима работы (F003) [Controller->Panel Menu-> F003 DI/DO & Operation Mode Setting(F003)]

Адрес панели управ- ления	Внутрен- ний адрес	Имя	Описание	Стан- дартно	Диапа- зон	RWS
d3.00	2FF00108	Store_Data	Сохранить или инициализировать параметры 1: Сохранить параметры регулирования 10: Инициализировать параметры регулирования	0	0-255	RW
d3.01	20100310	Din1_Function	См. раздел 6.1, табл. 6-1	0x0001	0-65535	RWS
d3.02	20100410	Din2_Function	См. раздел 6.1, табл. 6-1	0x0002	0-65535	RWS
d3.03	20100510	Din3_Function	См. раздел 6.1, табл. 6-1	0x2000	0-65535	RWS
d3.04	20100610	Din4_Function	См. раздел 6.1, табл. 6-1	0x0010	0-65535	RWS
d3.05	20100710	Din5_Function	См. раздел 6.1, табл. 6-1	0x0020	0-65535	RWS
d3.06	20100810	Din6_Function	См. раздел 6.1, табл. 6-1	0	0-65535	RWS
d3.07	20100910	Din7_Function	См. раздел 6.1, табл. 6-1	0x0040	0-65535	RWS
d3.10	20000008	Switch_On_Auto	0: Нулевая операция 1: Авторазблокировка, когда запу- щена логическая схема. Может настраиваться, только если разблокировка функции DIN не определена.	0	0-255	RWS
d3.11	20100F10	Dout1_Function	См. раздел 6.1, табл. 6-2	0x0001	0-65535	RWS
d3.12	20101010	Dout2_Function	См. раздел 6.1, табл. 6-2	0x0010	0-65535	RWS
d3.13	20101110	Dout3_Function	См. раздел 6.1, табл. 6-2	0x0004	0-65535	RWS
d3.14	20101210	Dout4_Function	См. раздел 6.1, табл. 6-2	0x0008	0-65535	RWS
d3.15	20101310	Dout5_Function	См. раздел 6.1, табл. 6-2	0x0002	0-65535	RWS
d3.16	20200D08	Din_Mode0	Режим работы канала 0: выбрать через входной разъем	-4	-128-127	RWS
d3.17	20200E08	Din_Mode1	Режим работы канала 1: выбрать через входной разъем	-3	-128-127	RWS
d3.18	20200910	Din_Speed0_RPM	См. параграф 6.2.2, табл. 6-8 Единица измерения: об/мин	0	-32768- 32767	RWS
d3.19	20200010	Din_Speed1_RPM	См. параграф 6.2.2, табл. 6-8 Единица измерения: об/мин	0	-32768- 32767	RWS
d3.20	20200B10	Din_Speed2_RPM	См. параграф 6.2.2, табл. 6-8 Единица измерения: об/мин	0	-32768- 32767	RWS
d3.21	20200C10	Din_Speed3_RPM	См. параграф 6.2.2, табл. 6-8 Единица измерения: об/мин	0	-32768- 32767	RWS
d3.22	25020110	Analog1_Filter	Параметры фильтра аналогового сигнала 1	5	1-127	RWS
d3.23	2FF01D10	Analog1_Dead_V	Единица измерения: 0,01 В	0	-1000-	RWS

Табл. 9-3: Параметры меню панели управления F003

d3.24	2FF01E10	Analog1 Offset V	Единица измерения: 0,01 В	0	-1000-	RWS
42.25	25020/10	Analog2 Filtor	Параметры фильтра аналогового	E	1 1 2 7	
u3.25	25020410	Analog2_Filler	сигнала 2	5	-1000-	RWJ
d3.26	2FF01F10	Analog2_Dead_V	Единица измерения: 0,01 В	0	1000	RWS
d3.27	2FF02010	Analog2_Offset_V	Единица измерения: 0,01 В	0	-1000- 1000	RWS
d3.28	25020708	Analog_Speed_Con	Аналоговый сигнал регулирует скорость, действительно в режиме работы 3 или -3 О: аналоговое регулирование скорости ВЫКЛ., регулирование скорости через Target_Speed(60FF.00) 1: скорость регулируется через AIN1 2: скорость регулируется через AIN2	0	0-255	RWS
d3.29	30410410	EASY_Analog_Speed	коэффициент передачи аналогового задания по скорости	/	-32768- 32767	RWS
d3.30	25020808	Analog_Torque_Con	Аналоговый сигнал регулирует крутящий момент, действительно в режиме работы 4 0: Analog_Torque_control BЫКЛ., целевой момент определяется через Target_Torque% (6071.00) 1: крутящий момент регулируется через AIN1 2: крутящий момент регулируется через AIN2	0	0-255	RWS
d3.31	2FF02110	Voltage_Torque_Factor	Аналоговый коэффициент крутящего момента, единица измерения: мН·м/В	/	-32768- 32767	RWS
d3.32	25020908	Analog_MaxT_Con	Аналоговый сигнал регулирует макс. крутящий момент О: недействительно 1: макс. крутящий момент регулируется через AIN1 2: макс. крутящий момент регулируется через AIN2	0	0-255	RWS
d3.33	2FF02210	Voltage_MaxT_Facto r	Аналоговый макс. коэффициент крутящего момента, единица измерения: мН·м/В	/	-32768- 32767	RWS
d3.34	25080110	Gear_Factor0	Числитель электронного редуктора	1000	-32768- 32767	RWS
d3.35	25080210	Gear_Divider0	Знаменатель электронного редуктора	1000	1-32767	RWS
d3.36	25080308	PD_CW	Режим импульсного управления 0: режим CW/CCW 1: режим импульса/направления 2: режим инкрементного датчика	1	0-255	RWS
d3.37	25080610	PD_Filter	Параметры фильтра тактового входа	3	0-255	RWS
d3.38	25080810	Frequency_Check	Максимальная частота входного импульса, единица измерения: импульсов/мс	600	0-3000	RWS
d3.39	25080910	Target_Reach_Time_ Window	Окно времени цели достигнуто (позиция, скорость). Единица измерения: мс	10	0-32767	RWS
d3.43	20200F10	Din_Controlword	Вход сигнала "Разблокировка" регулирует настройку	0X2F	0-65535	RWS

			управляющего слова Controlword			
d3.44	20201820	Din_Speed4_RPM	См. параграф 6.2.2, табл. 6-8 Единица измерения: об/мин	0	-32768- 32767	RWS
d3.45	20201920	Din_Speed5_RPM	См. параграф 6.2.2, табл. 6-8 Единица измерения: об/мин	0	-32768- 32767	RWS
d3.46	20201020	Din_Speed6_RPM	См. параграф 6.2.2, табл. 6-8 Единица измерения: об/мин	0	-32768- 32767	RWS
d3.47	20201B20	Din_Speed7_RPM	См. параграф 6.2.2, табл. 6-8 Единица измерения: об/мин	0	-32768- 32767	RWS
d3.48	30450010	Enc_COMM_State	Проверьте состояние связи энкодера, если энкодер инициализирован	0	0-65535	R
d3.49	30460008	CPLD_Filter	Сконфигурируйте фильтр в CPLD. Для сигнала продолжительности включения 50 %: 0: 125 нс 1: 156 нс 2: 250 нс 3: 313 нс 4: 1 мс 5: 1,5 мс 6: 2 мс 7: 4 мс	4	0-7	RWS
d3.50	30510110	Enc_ALM	Отображает полное состояние ошибки энкодера Nikon.	0	0-65535	R
d3.51	26900008	Encoder_Data_Reset	 Удалить состояние ошибки энкодера. Читать полное состояние ошибки. Удалить состояние ошибки и МТ-данные. 	0	0-255	RW
d3.52	2FF02310	Jog_RPM	Настроить шаговую скорость. Единица измерения: об/мин, невозможно сохранить в памяти.	30	-32767- 32768	RW
d3.53	20100110	Din_Polarity	Определить полярность сигнала DIN, 0: размыкатель; 1: замыкатель Бит 0: DIN1 Бит 1: DIN2 Бит 2: DIN3 	65535	0-65535	RWS
d3.54	20100D10	Dout_Polarity	Определить полярность сигнала Dout, O: размыкатель; 1: замыкатель Бит 0: Dout1 Бит 1: Dout2 Бит 2: Dout3 	65535	0-65535	RWS

9.4 F004

В этом меню панели управления содержатся параметры для мотора. Контроллер->Меню панели управления->Настройка мотора(F004) [Controller->Panel Menu->Motor Setting(F004)]

Адрес панели управ- ления	Внутрен- ний адрес	Имя	Описание	Стан- дартно	Диапа- зон	RWS
d4.00	2FF00308	Store_Motor_Data	Сохранить параметры мотора 1: Сохранить параметры мотора	0	0-255	RW
d4.01	64100110	Motor_Num	КодТипСветодиодымоторамотораJYEMMB-AS-40-01594AYOEMMB-AS-60-023059Y1EMMB-AS-60-043159Y2EMMB-AS-80-073259	0	0-65535	RWS
d4.02	64100208	Feedback_Type	Тип энкодера Бит0: контроль жил UVW Бит1: Nikon многооборотный Бит2: Nikon однооборотный Бит4: контроль жил ABZ Бит5: энкодер для экономии на жилах	/	0-255	R
d4.03	64100508	Motor_Poles	Пары полюсов мотора Единица измерения: 2 пары	/	0-255	R
d4.04	64100608	Commu_Mode	Режим коммутации	/	0-255	R
d4.05	64100710	Commu_Curr	Ток для коммутации Единица измерения: десятичн.	/	-2048- 2047	R
d4.06	64100810	Commu_Delay	Время для коммутации Единица измерения: мс	/	0-32767	R
d4.07	64100910	Motor_IIt_I	Ток для защиты мотора l²t Единица измерения: 0,0707 Асреднеквадр.	/	1-1500	R
d4.08	64100010	Motor_IIt_Filter	Постоянная времени защиты-I²t мотора Единица измерения: 0,256 с	100	2-32767	R
d4.09	64100B10	Imax_Motor	Максимальный ток мотора Единица измерения: 0,0707 А среднеквадр.	/	0-32767	R
d4.10	64100C10	L_Motor	Индуктивность катушки мотора Единица измерения: 0,1 мГн	/	1-32767	R
d4.11	64100D08	R_Motor	Сопротивление обмотки мотора Единица измерения: 0,1 Ом	/	0-32767	R
d4.12	64100E10	Ke_Motor	Противодействующий коэффициент ЭДС мотора Единица измерения: 0,1 Vp/тыс. об/мин	/	0-32767	R
d4.13	64100F10	Kt_Motor	Коэффициент крутящего момента мотора Единица измерения: 0,01 Н·м/Асреднеквадр.	/	1-32767	R

Табл. 9-4: Панель управления F004

d4.14	64101010	Jr_Motor	Момент инерции масс ротора	/	2-32767	R
		-	Единица измерения: 0,01 кг см ²			
			Задержка срабатывания тормоза			
d4.16	64101210	Brake_Delay	мотора	150	0-32767	R
			Единица измерения: мс			
d/ 18	64101610	Motor Using	Используемый в данное время	1	0-65535	P
u4.10	04101010		мотор	1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ĸ
			Для энкодеров мотора ЕММВ			
			этот параметр всегда составляет			
			65536. При регулировании			
16.21	(1100220	Feedback Decelution	позиции контроллер использует	,	2-32767 R 50 0-32767 R 0-65535 R 1-2^31-1 R 500-2500 R 500-2500 R 0-65535 R 0-65535 R 1 1 0-65535 R 1 1 <td>D</td>	D
04.21	64100320	Feedback_Resolution	65536/об как свое разрешение.	/		к
			При регулировании скорости			
			контроллер использует свое			
			полное разрешение 20 бит.			
14.22	(1100100				0-2^31-	5
d4.22	64100420	Feedback_Period	проверка энкодера с сигналом 2	/	1	к
			Ширина полосы пропускания		500	
d4.23	64101510	Motor_BW	контура регулирования тока	/	500-	R
			мотора		2500	
			Указывает, существует ли у мотора			
			дополнительное устройство;			
			Бит 0: Тормоз мотора.			
11.21	(1101710	Addition Device	Бит 0 = 0: Мотор без тормоза	0	0 (5505	
04.24	64101710	Addition_Device	Бит 0 = 1: Мотор снабжен тормо-	0	0-05555	RW
			зом, контроллер функционирует на			
			Brake_Delay(d4.16) мс дольше, пока			
			тормоз полностью не замкнется.			
			Коэффициент усиления регуля-			
d4.25	64101010	Gain_Factor	тора тока зависит от фактического	16	16-127	R
			тока ab			
1	1	1		1	1	1

9.5 F005

В этом меню панели управления содержатся различные параметры контроллера.

Контроллер->Меню панели управления->Настройка контроллера(F005) [Controller->Panel Menu->Controller Setting(F005)]

Габл	0.5.	Паноль	vп	האווסתסכמ	
гаол.	9-2:	панель	уп	равления	FUU5

Адрес панели управ- ления	Внутрен- ний адрес	Имя	Описание	Стан- дартные значе- ния	Диапа- зон	RWS
d5.00	2FF00108	Store_Data	Сохранить или инициализировать параметры 1: Сохранить параметры регулирования 10: Инициализировать параметры регулирования	0	0-255	RW
d5.01	100B0008	Node_ID	Идентификатор контроллера	1	0-255	RWS
d5.02	2FE00010	RS232_Baudrate	Скорость передачи данных в бодах последовательного интерфейса 540: 19200 270: 38400 185: 56000 180: 57600 Вступает в действие после перезапуска	270	0-65535	RWS
d5.03	2FE10010	U2BRG	Скорость передачи данных в бодах последовательного интерфейса 540: 19200 270: 38400 185: 56000 180: 57600 Сразу вступает в действие, невозможно сохранить в памяти	270	0-65535	RWS
d5.04	60F70110	Chop_Resistor	Значение сопротивления тормозного резистора Единица измерения: Ом	0	0-32767	RWS
d5.05	60F70210	Chop_Power_ Rated	Номинальная мощность тормозного резистора Единица измерения: Вт	0	0-32767	RWS
d5.06	60F70310	Chop_Filter	Для расчета мощности прерывателя.	60	1-32767	RWS
d5.15	65100B08	RS232_Loop_ Enable	Управление связью RS232 0: от 1 до 1 1: от 1 до N	0	0-255	RWS
d5.16	2FFD0010	Резерв				

Глава 10 Связь

Возможно управление, конфигурирование и мониторинг контроллера мотора СММВ с помощью следующего описания интерфейса и протокола через диалоговый интерфейс RS232 (X3).

10.1 Схема линий RS232

Если управлять контроллером мотора должен программируемый логический контроллер (ПЛК) или другие устройства управления через диалоговый интерфейс RS485, необходимо использовать преобразователь из RS485 в RS232.

10.1.1 Соединение "от точки к точке"

PC-CO	М	C	ИМВ ХЗ
RXD	2	3	TXD
TXD	3	6	RXD
GND	5	4	GND

Рис. 10-1: Схема линий связи между ПК (D-Sub, 9-конт.) и контроллером СММВ

10.1.2 Многоточечное соединение

Протокол передачи данных обеспечивает режим работы сети с хост-компьютером, функционирующим как мастер, и несколькими контроллерами CMMB в качестве слейвов (следует установить RS232_Loop_Enable(d5.15) на 1; сохранить в памяти после настройки и перезапустить контроллер). В этом случае кабельное подключение RS232 должно иметь следующую структуру контура:

Рис. 10-2: Схема линий связи между ПК (D-Sub, 9-конт.) и несколькими контроллерами СММВ

10.2 Транспортный протокол

Связь RS232 контроллера мотора CMMB строго базируется на протоколе мастера/слейва. Хост-компьютер отправляет данные к контроллеру CMMB. Контроллер проверяет данные с точки зрения контрольной суммы и правильного идентификационного номера, обрабатывает данные и отправляет ответ. Стандартные настройки связи для контроллера мотораCMMB:

Скорость передачи данных в бодах = 38 400 бит/с

Биты данных = 8

Стоповые биты = 1

Без проверки четности

Скорость передачи данных в бодах можно изменить в RS232 BaudRate(d5.02). После изменения значения требуется сохранить настройку и перезапустить систему.

Идентификатор контроллера можно изменить под Node ID(d5.02).

Транспортный протокол использует телеграмму с фиксированной длиной 10 байтов.

Байт О	Байт 1Байт 8	Байт 9
ID	Данные	CHKS

ID: идентификационный номер слейва

СНКS: контрольная сумма телеграммы, СНКS = - SUM(Byte 0 Byte 8)

10.2.1 Протокол "от точки к точке"

Хост обменивается данными с контроллером, RS232_Loop_Enable(d5.15)=0)

Хост отправляет:

Байт О	Байт 1Байт 8	Байт 9
ID	Данные хоста	CHKS

Слейв отправляет / Хост получает

Байт О	Байт 1Байт 8	Байт 9
ID	Данные слейва	CHKS

Если слейв найдет свой собственный ID в телеграмме хоста, он проверит значение CHKS. Если контрольная сумма не совпадает, слейв не генерирует ответ, и телеграмма хоста отменяется.

10.2.2 Многоточечный протокол

Хост обменивается данными с несколькими контроллерами, RS232_Loop_Enable(d5.15)=1 Хост отправляет:

Байт О	Байт 1 Байт 8	Байт 9
ID	Данные хоста	CHKS

Слейв отправляет / Хост получает (RS232_Loop_Enable(d5.15)=1):

Байт О	Байт 1 Байт 8	Байт 9	Байт О	Байт 1 Байт 8	Байт 9
ID	Данные хоста	CHKS	ID	Данные слейва	CHKS

Если хост отправляет телеграмму с неиспользуемым ID, то данные передаются через контур (цикл) RS232, но ответ слейва не приходит.

Слейв, который найдет свой собственный ID в телеграмме хоста, проверит значение CHKS. Если контрольная сумма не совпадает, слейв не генерирует ответ, и телеграмма хоста отменяется этим слейвом.

10.3 Протокол данных

Содержимое данных транспортного протокола представляет собой протокол данных. Он содержит 8 байт. Определение протокола данных RS232 контроллера мотора CMMB совместимо с протоколом SDO CANopen, также выполняет требования внутренней организации данных стандарта CANopen. Все параметры, значения и функции доступны через 24-битный адрес, который состоит из 16-битного индекса и 8-битного субиндекса.

10.3.1 Загрузка (из хоста в слейв)

"Загрузка" означает, что хост отправляет команду, чтобы записать значения на объекты в слейве. Слейв генерирует сообщение об ошибке, если значение загружается на несуществующий объект. Хост отправляет:

Байт О	Байт 1	Байт 2	Байт 3	Байт 4	Байт 5	Байт 6	Байт 7
CMD	INE	DEX	SUB INDEX		DA	TA	

СМD: Указывает направление передачи данных и размер данных.
23 (шестнадцатеричн.) Отправляет 4-байтовые данные (Байты 4...7 содержат 32 бита)
2b (шестнадцатеричн.) Отправляет 2-байтовые данные (Байты 4 и 5 содержат 16 бит)
2f (шестнадцатеричн.) Отправляет 1-байтовые данные (Байт 4 содержит 8 бит)
INDEX: Индекс в каталоге объектов, в который нужно отправить данные
SUB INDEX: Субиндекс в каталоге объектов, в который нужно отправить данные
DATA: 8-, 16- или 32-битное значение

Слейв отвечает:

Байт О	Байт 1	Байт 2	Байт З	Байт 4	Байт 5	Байт 6	Байт 7			
RES	INE	INDEX		PE3EPB						
RES: Отображает ответ слейва:										
	60(шестнадцатеричн.) Данные успешно отправлены									
	80	О(шестнад	цатеричн.) Ошибка,	байты 4	.7 содержа	ат причин	у ошибки		
INDEX:	16	б-битное з	начение, і	копия инд	екса в тел	еграмме з	хоста			
SUBINDE	SUBINDEX: 8-битное значение, копия субиндекса в телеграмме хоста									
PE3EPB:	РЕЗЕРВ: Не используется									

10.3.2 Выгрузка (из слейва в хост)

"Выгрузка" означает, что мастер отправляет команду, чтобы читать значение объекта от слейва. Слейв генерирует ошибку, если запрашивается несуществующий объект.

Мастер отправляет:

Байт О	Байт 1	Байт 2	Байт 3	Байт 4	Байт 5	Байт 6	Байт 7		
CMD	INE	DEX	SUB INDEX		PE3EPB				
СМD: Указывает направление передачи данных									
40(шестнадцатеричн.) всегда									
INDEX:	16	5-битное з	начение, і	индекс в н	каталоге о	бъектов, в	в котором	сохранены запрошен	
	Да	анные.							
SUBINDE	X: 8-	битное зн	ачение, и	ндекс, суб	индекс в	каталоге с	объектов,	в котором сохранены	
	38	прошенни	ые данные	2.					
PE3EPB:	Ба	айты 47 і	не исполь:	зуются					

Слейв отвечает:

Байт О	Байт 1	Байт 2	Байт 3	Байт 4	Байт 5	Байт 6	Байт 7			
RES	INE	INDEX								
RES:	ES: Отображает ответ слейва:									
43(шестнадцатеричн.) Байты 47 содержат 32-битные данные										
	4	В(шестнад	цатеричн	.) Байты 4	и 5 содер	жат 16-би	тные данн	ые		
	41	f(шестнадь	цатеричн.)	Байт 4 со	держит 8-	битные да	анные			
	80	О(шестнад	цатеричн.) Ошибка,	байты 4 .	7 содеру	кат причи	ну ошибки		
INDEX:	16	б-битное з	начение, і	копия инд	екса в тел	еграмме :	хоста			
SUBINDE	X: 8-	битное зна	ачение, ко	опия суби	ндекса в т	елеграмм	е хоста			
DATA:	Да	анные или	причина	ошибки, в	зависим	ости от RE	S			

10.4 Пример телеграммы RS232

В следующей таблице показан пример телеграммы RS232.

ID	R/W	Index	Sub Index	Data	Контрольная сумма	Пояснение
01	2B	40 60	00	2F 00 00 00	05	Задать Controlword = 0x2F, активировать контроллер
01	2F	60 60	00	06 00 00 00	0A	Задать Operation_Mode = 0x06
01	23	7A 60	00	50 C3 00 00	EF	Задать Target_position= 50000
01	40	41 60	00	00 00 00 00	1E	Читать слово состояния

Табл. 10-1: Пример телеграммы RS232